Prediction of talent selection in elite male youth soccer across 7 seasons: A machine-learning approach

冲刺 心理学 人才培养 精英 应用心理学 团体运动 灵活性(工程) 物理疗法 发展心理学 医学 数学 运动员 统计 教育学 政治 政治学 法学
作者
Stefan Altmann,Ludwig Ruf,Stefan Thiem,Tobias Beckmann,Oliver Wohak,C. Romeike,Sascha Härtel
出处
期刊:Journal of Sports Sciences [Informa]
卷期号:: 1-14
标识
DOI:10.1080/02640414.2024.2442850
摘要

This study aimed to investigate the relative importance of parameters from several domains associated to both selecting or de-selecting players with regards to the next age group within a professional German youth soccer academy across a 7-year period. Following a mixed-longitudinal approach, physical, physiological, psychological, skill-, health-, age-, and position-related parameters were collected from 409 male players (980 datapoints) from the U12 to U19 age groups. Supervised machine learning classifiers were used to predict the selection status regarding the next age group. The XGBoost models (ROC-AUC: 0.69, F1-Score: 0.84) revealed that physical and physiological (linear sprint, change-of-direction sprint, countermovement jump, aerobic speed reserve) as well as skill-related parameters (soccer-specific skill) were most important for being selected or de-selected regarding the next age group across the entire sample and all age groups. The majority of psychological parameters (motive structure, motive attention, motive competition, cognitive flexibility) were of medium importance. No clear pattern was observed for the health-, age-, and position-related parameters. Our study provides insights into key parameters for talent selection thereby contributing to an overall talent management strategy in highly trained youth soccer players. In particular, coaches and key stakeholders might focus on physical, physiological, and skill-related parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
闪闪元芹完成签到,获得积分10
刚刚
沙尘白霍完成签到,获得积分20
1秒前
忆往昔完成签到,获得积分10
1秒前
tzj完成签到 ,获得积分10
1秒前
Luyao完成签到,获得积分10
1秒前
wanci应助木木采纳,获得10
2秒前
今后应助芝芝采纳,获得10
2秒前
情怀应助健康的半仙采纳,获得10
3秒前
丘比特应助健康的半仙采纳,获得10
3秒前
深情安青应助健康的半仙采纳,获得10
3秒前
小蘑菇应助健康的半仙采纳,获得10
3秒前
研友_VZG7GZ应助健康的半仙采纳,获得10
4秒前
Ava应助上官采纳,获得10
4秒前
丘比特应助健康的半仙采纳,获得10
4秒前
cc发布了新的文献求助10
4秒前
5秒前
友好天蓝完成签到,获得积分10
6秒前
科研互通完成签到,获得积分10
6秒前
Z1发布了新的文献求助10
7秒前
7秒前
文文完成签到,获得积分10
7秒前
贤惠的枫完成签到,获得积分10
8秒前
解雨洁发布了新的文献求助20
9秒前
卡卡罗特发布了新的文献求助10
9秒前
lihui完成签到,获得积分10
9秒前
Ava应助混吃等死研究生采纳,获得10
9秒前
YSL发布了新的文献求助10
9秒前
落后的天佑完成签到,获得积分10
11秒前
11秒前
贤惠的枫发布了新的文献求助10
11秒前
李爱国应助zoe采纳,获得10
11秒前
12秒前
小橘猫完成签到 ,获得积分10
12秒前
leslie完成签到,获得积分10
12秒前
飞飞应助金开采纳,获得10
12秒前
12秒前
SciGPT应助科研通管家采纳,获得10
13秒前
YsGao应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589368
求助须知:如何正确求助?哪些是违规求助? 4674147
关于积分的说明 14791974
捐赠科研通 4628350
什么是DOI,文献DOI怎么找? 2532283
邀请新用户注册赠送积分活动 1500934
关于科研通互助平台的介绍 1468454