已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rethinking Semantic Segmentation with Multi-Grained Logical Prototype

计算机科学 分割 人工智能 图像分割 自然语言处理 语义学(计算机科学) 计算机视觉 程序设计语言
作者
Anzhu Yu,Kuiliang Gao,Xiong You,Yanfei Zhong,Yu Su,Bing Liu,Chunping Qiu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3543052
摘要

The last decade has witnessed significant advances in semantic segmentation brought about by deep learning. However, existing methods only fit the data-label correspondence in a data-driven manner and do not fully conform to the abstraction and structuralization characteristics of the human visual cognition process, which limits the upper bounds of their performance. To this end, a multi-grained logical prototype (MGLP) method is proposed to rethink semantic segmentation based on these two key characteristics. Its novel design can be summarized as follows. (1) For abstraction, prototypes of the same class at different grain levels are established: a label generation method is proposed to automatically generate a multi-grained label space, which can guide the learning of the multi-grained prototypes for each class. (2) For structuralization, the intrinsic logical structure across different semantic levels is explicitly modeled: the horizontal metric relationships are established via metric relation operations on prototypes at the same grain level, to improve the discriminability between classes while taking the vertical semantic hierarchy into account. Moveover, the vertical logical relationships are established as the sub-to-super positive and super-to-sub negative constraints, to strengthen the semantic dependencies among prototypes at different grain levels. (3) MGLP is plug-and-play and can be directly combined with existing segmentation methods. Extensive experimental results indicate that MGLP can significantly improve the segmentation performance of existing methods, which opens up a new avenue for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soledy发布了新的文献求助10
刚刚
落叶完成签到,获得积分10
1秒前
木兮完成签到 ,获得积分10
3秒前
这个东发布了新的文献求助10
3秒前
马儿爱乱跑完成签到,获得积分20
4秒前
pollen完成签到,获得积分10
5秒前
在水一方应助林小雨采纳,获得10
8秒前
汤泽琪发布了新的文献求助10
8秒前
8秒前
Yangqx007完成签到,获得积分10
10秒前
Jiang发布了新的文献求助10
11秒前
CYL完成签到 ,获得积分10
12秒前
大蚂蚁完成签到,获得积分10
13秒前
13秒前
胖咚咚完成签到 ,获得积分10
15秒前
15秒前
星辰大海应助pollen采纳,获得10
18秒前
HTRH发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
爱学习完成签到,获得积分10
21秒前
小星星完成签到,获得积分10
21秒前
shenle发布了新的文献求助10
22秒前
24秒前
静待花开发布了新的文献求助10
24秒前
24秒前
独特听芹发布了新的文献求助10
26秒前
30秒前
上善若水完成签到 ,获得积分10
31秒前
31秒前
英俊的铭应助ST采纳,获得10
33秒前
Lucas应助拼搏的秋玲采纳,获得10
34秒前
huangrui完成签到 ,获得积分10
34秒前
Wink14551发布了新的文献求助10
35秒前
坦率的跳跳糖完成签到 ,获得积分10
35秒前
zhaoyang发布了新的文献求助10
36秒前
可爱的静完成签到,获得积分10
37秒前
酱豆豆完成签到 ,获得积分10
41秒前
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538812
求助须知:如何正确求助?哪些是违规求助? 3116497
关于积分的说明 9325545
捐赠科研通 2814404
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712136