亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic lane-changing strategy for autonomous articulated heavy vehicles considering vehicles stability in complex environments

理论(学习稳定性) 铰接式车辆 计算机科学 航空航天工程 工程类 卡车 机器学习
作者
Zhigen Nie,Yiqing Zhou,Yufeng Lian
标识
DOI:10.1177/09544070251317748
摘要

Articulated heavy vehicles is the mainstay of inter-city freight transportation, and is the one of the most likely fields for the earliest practical applications of intelligent driving. Trajectory planning and tracking of lane change are critical technologies for Autonomous Articulated Heavy Vehicles (AAHVs). Characteristics of the AAHVs susceptible to stability problems resulting from the high height, long lengths, heavy load, and mutual coupling of tractor and trailer, combined the complex environments with the dynamic changes in the states of adjacent vehicles and road adhesion coefficient, pose a significant challenge in dynamic lane change for AAHVs. To address the above challenges, a framework is proposed to achieve the trajectory planning and tracking of dynamic lane change for AAHVs. For trajectory planning approach, the trajectory planning and replanning is optimized in the real-time safe range of the longitudinal length of the lane-changing trajectory to obtain the real-time reference trajectory, considering vehicle stability and lane-changing efficiency. The minimum longitudinal length of lane-changing trajectory is determined by the predictive model of AAHVs stability including swing-out, jack-knifing, and rollover, utilizing the Long Short-Term Memory (LSTM) neural network. The minimum longitudinal length, combined with the maximum length formed by the adjacent vehicles with dynamic states, forms the real-time safe range for lane-changing trajectory planning. For trajectory tracking approach, a tracking approach using model predictive control based on multipoint preview is proposed to achieve the real-time planned trajectory tracking. The effectiveness of the proposed strategy is evaluated by simulating an experimentally validated Trucksim model in complex environments to demonstrate the capability of the strategy in trajectory planning and tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaop发布了新的文献求助10
刚刚
2秒前
身法马可波罗完成签到 ,获得积分10
2秒前
许多多完成签到,获得积分10
2秒前
4秒前
甘木鸣发布了新的文献求助10
10秒前
10秒前
我想进步完成签到 ,获得积分10
12秒前
dzll发布了新的文献求助10
13秒前
miles完成签到,获得积分10
14秒前
一颗苹果发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
jam完成签到,获得积分10
17秒前
甘木鸣完成签到,获得积分10
19秒前
dzll完成签到,获得积分10
20秒前
22秒前
yyds应助Dove采纳,获得10
24秒前
qwe发布了新的文献求助10
27秒前
苏雅霏完成签到 ,获得积分10
43秒前
慕青应助小刘忙采纳,获得10
44秒前
科研通AI5应助轻松板栗采纳,获得10
47秒前
52秒前
53秒前
一只小小鸟完成签到 ,获得积分10
54秒前
情怀应助qwe采纳,获得10
55秒前
小刘忙完成签到,获得积分10
58秒前
小刘忙发布了新的文献求助10
1分钟前
沉默的西牛完成签到,获得积分10
1分钟前
不是欧姆表完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
善学以致用应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
轻松板栗发布了新的文献求助10
1分钟前
无花果应助沉默的西牛采纳,获得10
1分钟前
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5115938
求助须知:如何正确求助?哪些是违规求助? 4322755
关于积分的说明 13469432
捐赠科研通 4154827
什么是DOI,文献DOI怎么找? 2276781
邀请新用户注册赠送积分活动 1278680
关于科研通互助平台的介绍 1216642