Dynamic lane-changing strategy for autonomous articulated heavy vehicles considering vehicles stability in complex environments

理论(学习稳定性) 铰接式车辆 计算机科学 航空航天工程 工程类 卡车 机器学习
作者
Zhigen Nie,Yiqing Zhou,Yufeng Lian
标识
DOI:10.1177/09544070251317748
摘要

Articulated heavy vehicles is the mainstay of inter-city freight transportation, and is the one of the most likely fields for the earliest practical applications of intelligent driving. Trajectory planning and tracking of lane change are critical technologies for Autonomous Articulated Heavy Vehicles (AAHVs). Characteristics of the AAHVs susceptible to stability problems resulting from the high height, long lengths, heavy load, and mutual coupling of tractor and trailer, combined the complex environments with the dynamic changes in the states of adjacent vehicles and road adhesion coefficient, pose a significant challenge in dynamic lane change for AAHVs. To address the above challenges, a framework is proposed to achieve the trajectory planning and tracking of dynamic lane change for AAHVs. For trajectory planning approach, the trajectory planning and replanning is optimized in the real-time safe range of the longitudinal length of the lane-changing trajectory to obtain the real-time reference trajectory, considering vehicle stability and lane-changing efficiency. The minimum longitudinal length of lane-changing trajectory is determined by the predictive model of AAHVs stability including swing-out, jack-knifing, and rollover, utilizing the Long Short-Term Memory (LSTM) neural network. The minimum longitudinal length, combined with the maximum length formed by the adjacent vehicles with dynamic states, forms the real-time safe range for lane-changing trajectory planning. For trajectory tracking approach, a tracking approach using model predictive control based on multipoint preview is proposed to achieve the real-time planned trajectory tracking. The effectiveness of the proposed strategy is evaluated by simulating an experimentally validated Trucksim model in complex environments to demonstrate the capability of the strategy in trajectory planning and tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助蓝莓采纳,获得10
1秒前
lily发布了新的文献求助10
2秒前
ikun0000完成签到,获得积分10
2秒前
2秒前
3秒前
yulou2199完成签到,获得积分10
3秒前
belssingoo发布了新的文献求助30
3秒前
zcz发布了新的文献求助10
3秒前
doudou完成签到,获得积分10
3秒前
Ratel完成签到,获得积分10
3秒前
3秒前
Doreen完成签到,获得积分10
4秒前
4秒前
DRXXX发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
mengwensi完成签到,获得积分10
6秒前
Vintoe完成签到 ,获得积分10
6秒前
wanci应助难过云朵采纳,获得10
7秒前
7秒前
日月完成签到,获得积分10
7秒前
宝玉完成签到 ,获得积分10
7秒前
伶俐摩托发布了新的文献求助10
8秒前
9秒前
9秒前
LL完成签到,获得积分10
10秒前
yuyu完成签到,获得积分10
10秒前
善学以致用应助TaoBijiang采纳,获得10
10秒前
10秒前
daniel完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
无私的颤完成签到,获得积分10
11秒前
Ray完成签到,获得积分0
12秒前
yanjiuhuzu完成签到,获得积分10
12秒前
李滔发布了新的文献求助10
12秒前
微笑鹤完成签到,获得积分10
12秒前
YXIAN完成签到,获得积分10
12秒前
莫歌完成签到 ,获得积分10
13秒前
有信心完成签到 ,获得积分10
14秒前
缄默发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773617
求助须知:如何正确求助?哪些是违规求助? 5612760
关于积分的说明 15431930
捐赠科研通 4906024
什么是DOI,文献DOI怎么找? 2640036
邀请新用户注册赠送积分活动 1587869
关于科研通互助平台的介绍 1542957