已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic lane-changing strategy for autonomous articulated heavy vehicles considering vehicles stability in complex environments

理论(学习稳定性) 铰接式车辆 计算机科学 航空航天工程 工程类 卡车 机器学习
作者
Zhigen Nie,Yiqing Zhou,Yufeng Lian
标识
DOI:10.1177/09544070251317748
摘要

Articulated heavy vehicles is the mainstay of inter-city freight transportation, and is the one of the most likely fields for the earliest practical applications of intelligent driving. Trajectory planning and tracking of lane change are critical technologies for Autonomous Articulated Heavy Vehicles (AAHVs). Characteristics of the AAHVs susceptible to stability problems resulting from the high height, long lengths, heavy load, and mutual coupling of tractor and trailer, combined the complex environments with the dynamic changes in the states of adjacent vehicles and road adhesion coefficient, pose a significant challenge in dynamic lane change for AAHVs. To address the above challenges, a framework is proposed to achieve the trajectory planning and tracking of dynamic lane change for AAHVs. For trajectory planning approach, the trajectory planning and replanning is optimized in the real-time safe range of the longitudinal length of the lane-changing trajectory to obtain the real-time reference trajectory, considering vehicle stability and lane-changing efficiency. The minimum longitudinal length of lane-changing trajectory is determined by the predictive model of AAHVs stability including swing-out, jack-knifing, and rollover, utilizing the Long Short-Term Memory (LSTM) neural network. The minimum longitudinal length, combined with the maximum length formed by the adjacent vehicles with dynamic states, forms the real-time safe range for lane-changing trajectory planning. For trajectory tracking approach, a tracking approach using model predictive control based on multipoint preview is proposed to achieve the real-time planned trajectory tracking. The effectiveness of the proposed strategy is evaluated by simulating an experimentally validated Trucksim model in complex environments to demonstrate the capability of the strategy in trajectory planning and tracking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助无辜的皮皮虾采纳,获得10
刚刚
2秒前
2秒前
2秒前
sunphor发布了新的文献求助10
3秒前
perdgs发布了新的文献求助10
3秒前
4秒前
轻松的桐完成签到,获得积分10
6秒前
笗一一完成签到 ,获得积分20
7秒前
7秒前
Anhydride发布了新的文献求助10
7秒前
尘尘完成签到,获得积分10
11秒前
友好凌柏完成签到 ,获得积分10
11秒前
晴天完成签到 ,获得积分10
11秒前
11秒前
12秒前
yema完成签到 ,获得积分10
13秒前
秉文完成签到,获得积分10
15秒前
科研通AI5应助单纯的雅香采纳,获得50
16秒前
斑鸠津完成签到,获得积分10
18秒前
gya发布了新的文献求助10
18秒前
19秒前
亚亚发布了新的文献求助30
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得30
21秒前
张杰列夫完成签到 ,获得积分10
21秒前
sunphor发布了新的文献求助10
22秒前
听闻墨笙完成签到 ,获得积分10
23秒前
23秒前
msygcz发布了新的文献求助10
26秒前
无辜的皮皮虾完成签到,获得积分10
28秒前
今后应助轻松的桐采纳,获得30
28秒前
莫里亚蒂发布了新的文献求助10
28秒前
30秒前
zzz122关注了科研通微信公众号
32秒前
33秒前
莫里亚蒂完成签到,获得积分20
36秒前
畜牧笑笑完成签到 ,获得积分10
36秒前
自由的尔蓉完成签到 ,获得积分10
38秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477379
求助须知:如何正确求助?哪些是违规求助? 3068812
关于积分的说明 9109727
捐赠科研通 2760297
什么是DOI,文献DOI怎么找? 1514760
邀请新用户注册赠送积分活动 700461
科研通“疑难数据库(出版商)”最低求助积分说明 699566