🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Development of an artificial intelligence-generated, explainable treatment recommendation system for urothelial carcinoma and renal cell carcinoma to support multidisciplinary cancer conferences

肾细胞癌 多学科方法 医学 癌症 尿路上皮癌 肿瘤科 尿路上皮癌 内科学 癌症研究 膀胱癌 社会科学 社会学
作者
Gregor Duwe,Dominique Mercier,Verena Kauth,Kerstin Moench,Vikas Rajashekar,Markus Junker,Andreas Dengel,Axel Haferkamp,Thomas Höfner
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:: 115367-115367
标识
DOI:10.1016/j.ejca.2025.115367
摘要

Decisions on the best available treatment in clinical oncology are based on expert opinions in multidisciplinary cancer conferences (MCC). Artificial intelligence (AI) could increase evidence-based treatment by generating additional treatment recommendations (TR). We aimed to develop such an AI system for urothelial carcinoma (UC) and renal cell carcinoma (RCC). Comprehensive data of patients with histologically confirmed UC and RCC who received MCC recommendations in the years 2015 - 2022 were transformed into machine readable representations. Development of a two-step process to train a classifier to mimic TR was followed by identification of superordinate and detailed categories of TR. Machine learning (CatBoost, XGBoost, Random Forest) and deep learning (TabPFN, TabNet, SoftOrdering CNN, FCN) techniques were trained. Results were measured by F1-scores for accuracy weights. AI training was performed with 1617 (UC) and 880 (RCC) MCC recommendations (77 and 76 patient input parameters). The AI system generated fully automated TR with excellent F1-scores for UC (e.g. 'Surgery' 0.81, 'Anti-cancer drug' 0.83, 'Gemcitabine/Cisplatin' 0.88) and RCC (e.g. 'Anti-cancer drug' 0.92 'Nivolumab' 0.78, 'Pembrolizumab/Axitinib' 0.89). Explainability is provided by clinical features and their importance score. Finally, TR and explainability were visualized on a dashboard. This study demonstrates for the first time AI-generated, explainable TR in UC and RCC with excellent performance results as a potential support tool for high-quality, evidence-based TR in MCC. The comprehensive technical and clinical development sets global reference standards for future AI developments in MCC recommendations in clinical oncology. Next, prospective validation of the results is mandatory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daisies完成签到,获得积分10
1秒前
wanci应助苹果沛蓝采纳,获得10
1秒前
zdnn发布了新的文献求助10
2秒前
guozizi发布了新的文献求助10
3秒前
华仔应助o10采纳,获得30
3秒前
Ethan发布了新的文献求助10
4秒前
winlence完成签到,获得积分10
5秒前
8秒前
叶子宁完成签到,获得积分10
8秒前
科研通AI5应助zidan007采纳,获得10
11秒前
张先伟完成签到,获得积分10
12秒前
14秒前
星川发布了新的文献求助10
15秒前
15秒前
18秒前
o10发布了新的文献求助30
19秒前
beyondjun发布了新的文献求助10
19秒前
微笑时发布了新的文献求助10
19秒前
iyuccvbe完成签到,获得积分10
21秒前
22秒前
明理宛秋完成签到 ,获得积分10
22秒前
23秒前
打老虎完成签到,获得积分10
23秒前
23秒前
爱看文献的小恐龙完成签到,获得积分10
23秒前
SciGPT应助麦秋Q采纳,获得10
27秒前
冰淇淋完成签到,获得积分10
27秒前
beyondjun完成签到,获得积分10
28秒前
lyz666发布了新的文献求助10
29秒前
zidan007发布了新的文献求助10
29秒前
31秒前
原鑫完成签到,获得积分10
31秒前
humomo给ATA的求助进行了留言
32秒前
星辰完成签到,获得积分10
33秒前
35秒前
jason完成签到,获得积分10
35秒前
lin发布了新的文献求助10
36秒前
轻松冷之完成签到,获得积分10
37秒前
Ava应助XIAONIE25采纳,获得10
37秒前
打打应助worker采纳,获得10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
EEG in clinical practice 2nd edition 1994 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3604941
求助须知:如何正确求助?哪些是违规求助? 3172960
关于积分的说明 9576742
捐赠科研通 2879116
什么是DOI,文献DOI怎么找? 1581336
邀请新用户注册赠送积分活动 743586
科研通“疑难数据库(出版商)”最低求助积分说明 726031