数学
四元数
惯性参考系
多项式的
同步(交流)
应用数学
控制理论(社会学)
人工神经网络
数学分析
拓扑(电路)
组合数学
计算机科学
几何学
人工智能
物理
控制(管理)
量子力学
作者
Jingjing Zhang,Zhouhong Li,Jinde Cao,Xiaofang Meng
摘要
ABSTRACT This paper investigates the global polynomial synchronization of the quaternion‐valued inertial neural networks with proportional delay and mismatched parameters. The global polynomial synchronization of neural networks is guaranteed by constructing the suitable Lyapunov functional and controller, utilizing nonreduction and nondecomposition methods. Notably, the Lyapunov functional established is delay‐free, and choosing the appropriate norm of the quaternion vectors can more effectively reduce the Lyapunov functional. Moreover, some quaternion properties are applied to explore the global polynomial synchronization problem of quaternion‐valued inertial neural networks, which avoids quaternion decomposition. Finally, we validate the conclusions with the numerical simulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI