清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Efficient FPGA-Based Accelerator for Swin Transformer

现场可编程门阵列 计算 计算机科学 Softmax函数 硬件加速 加速 变压器 规范化(社会学) 推论 并行计算 查阅表格 卷积神经网络 计算科学 计算机工程 高效能源利用 计算机硬件 算法 人工智能 电压 电气工程 工程类 社会学 人类学 程序设计语言
作者
Zhiyang Liu,Pengyu Yin,Zhenhua Ren
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2308.13922
摘要

Since introduced, Swin Transformer has achieved remarkable results in the field of computer vision, it has sparked the need for dedicated hardware accelerators, specifically catering to edge computing demands. For the advantages of flexibility, low power consumption, FPGAs have been widely employed to accelerate the inference of convolutional neural networks (CNNs) and show potential in Transformer-based models. Unlike CNNs, which mainly involve multiply and accumulate (MAC) operations, Transformer involve non-linear computations such as Layer Normalization (LN), Softmax, and GELU. These nonlinear computations do pose challenges for accelerator design. In this paper, to propose an efficient FPGA-based hardware accelerator for Swin Transformer, we focused on using different strategies to deal with these nonlinear calculations and efficiently handling MAC computations to achieve the best acceleration results. We replaced LN with BN, Given that Batch Normalization (BN) can be fused with linear layers during inference to optimize inference efficiency. The modified Swin-T, Swin-S, and Swin-B respectively achieved Top-1 accuracy rates of 80.7%, 82.7%, and 82.8% in ImageNet. Furthermore, We employed strategies for approximate computation to design hardware-friendly architectures for Softmax and GELU computations. We also designed an efficient Matrix Multiplication Unit to handle all linear computations in Swin Transformer. As a conclude, compared with CPU (AMD Ryzen 5700X), our accelerator achieved 1.76x, 1.66x, and 1.25x speedup and achieved 20.45x, 18.60x, and 14.63x energy efficiency (FPS/power consumption) improvement on Swin-T, Swin-S, and Swin-B models, respectively. Compared to GPU (Nvidia RTX 2080 Ti), we achieved 5.05x, 4.42x, and 3.00x energy efficiency improvement respectively. As far as we know, the accelerator we proposed is the fastest FPGA-based accelerator for Swin Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿烂而孤独的八戒完成签到 ,获得积分0
5秒前
量子星尘发布了新的文献求助10
6秒前
18秒前
BinBlues完成签到,获得积分10
18秒前
23秒前
38秒前
vicky完成签到 ,获得积分10
53秒前
冷傲半邪完成签到,获得积分10
1分钟前
1分钟前
nuliguan完成签到 ,获得积分10
1分钟前
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zpc猪猪完成签到,获得积分10
2分钟前
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
003发布了新的社区帖子
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
Archer发布了新的文献求助10
6分钟前
彭于晏应助003采纳,获得10
6分钟前
6分钟前
003发布了新的文献求助10
6分钟前
6分钟前
量子星尘发布了新的文献求助30
6分钟前
Archer完成签到,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596369
求助须知:如何正确求助?哪些是违规求助? 4008305
关于积分的说明 12409093
捐赠科研通 3687302
什么是DOI,文献DOI怎么找? 2032309
邀请新用户注册赠送积分活动 1065560
科研通“疑难数据库(出版商)”最低求助积分说明 950863