Relation-Aware Graph Attention Network for Multi-Behavior Recommendation

计算机科学 关系(数据库) 依赖关系(UML) 偏爱 图形 机器学习 交互信息 因子(编程语言) 理论计算机科学 人工智能 人机交互 数据挖掘 程序设计语言 经济 微观经济学 统计 数学
作者
Ming Wu,Qiufen Ni,Jigang Wu
标识
DOI:10.1109/ijcnn54540.2023.10191140
摘要

In practical recommendation scenarios, the types of user behaviors are usually diverse (e.g., click, add-to-cart, purchase), and different types of user behaviors can provide different aspects of user preference information. However, most existing methods only consider a single type of user behavior for modeling, which is not sufficient to fully learn complex user preferences. Besides multiple behavior types, the heterogeneous preference strength of users for items under the same behavior is also a factor that is often overlooked by most methods. Moreover, different types of behaviors may be correlated due to various factors, inadequate exploration of the implicit relationships between different types of behaviors may lead to the loss of potential information across behaviors. To solve the above problems, we propose a novel multi-behavior model with relation-aware graph attention network (RGAN), which is built on a graph-based neural architecture to explore high-order user-item relations. Specifically, we design a relation-aware attention propagation layer and an inter-behavior dependency encoder to capture heterogeneous collaborative signals from type-specific and inter-type behavior relations, respectively. During behavior integration, our proposed model automatically learns which types of behaviors are more important for assisting target behavior prediction. Extensive experiments conducted on three real-world datasets demonstrate that the RGAN model consistently outper-forms many state-of-the-art baselines, in terms of HR@n and NDCG@n.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lan完成签到 ,获得积分10
刚刚
落寞鞋子完成签到,获得积分10
1秒前
Bio应助gnr2000采纳,获得30
1秒前
椰子完成签到 ,获得积分10
1秒前
安夏完成签到,获得积分10
2秒前
蜜桃乌龙茶完成签到,获得积分10
2秒前
颜万声完成签到,获得积分10
2秒前
2秒前
3秒前
张希伦完成签到 ,获得积分10
3秒前
CipherSage应助斜玉采纳,获得30
4秒前
我是老大应助Helly采纳,获得10
4秒前
4秒前
栀初完成签到,获得积分10
5秒前
5秒前
yaeshin完成签到,获得积分10
5秒前
爱上学的小金完成签到 ,获得积分10
5秒前
5秒前
7秒前
7秒前
7秒前
chemier027完成签到,获得积分10
10秒前
学术小钻风完成签到,获得积分20
10秒前
vikoel完成签到,获得积分10
10秒前
hayden完成签到,获得积分10
10秒前
77发布了新的文献求助20
11秒前
Deng完成签到,获得积分10
11秒前
深情安青应助JoshuaChen采纳,获得10
11秒前
Moscrol发布了新的文献求助10
12秒前
12秒前
黑天鹅完成签到,获得积分20
12秒前
冯宇关注了科研通微信公众号
12秒前
lin完成签到,获得积分10
12秒前
破晓完成签到,获得积分10
13秒前
14秒前
潇湘夜雨完成签到,获得积分10
14秒前
上官若男应助lane采纳,获得10
15秒前
黑天鹅发布了新的文献求助30
15秒前
科研小白完成签到,获得积分10
15秒前
neil发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582