Relation-Aware Graph Attention Network for Multi-Behavior Recommendation

计算机科学 关系(数据库) 依赖关系(UML) 偏爱 图形 机器学习 交互信息 因子(编程语言) 理论计算机科学 人工智能 人机交互 数据挖掘 程序设计语言 经济 微观经济学 统计 数学
作者
Ming Wu,Qiufen Ni,Jigang Wu
标识
DOI:10.1109/ijcnn54540.2023.10191140
摘要

In practical recommendation scenarios, the types of user behaviors are usually diverse (e.g., click, add-to-cart, purchase), and different types of user behaviors can provide different aspects of user preference information. However, most existing methods only consider a single type of user behavior for modeling, which is not sufficient to fully learn complex user preferences. Besides multiple behavior types, the heterogeneous preference strength of users for items under the same behavior is also a factor that is often overlooked by most methods. Moreover, different types of behaviors may be correlated due to various factors, inadequate exploration of the implicit relationships between different types of behaviors may lead to the loss of potential information across behaviors. To solve the above problems, we propose a novel multi-behavior model with relation-aware graph attention network (RGAN), which is built on a graph-based neural architecture to explore high-order user-item relations. Specifically, we design a relation-aware attention propagation layer and an inter-behavior dependency encoder to capture heterogeneous collaborative signals from type-specific and inter-type behavior relations, respectively. During behavior integration, our proposed model automatically learns which types of behaviors are more important for assisting target behavior prediction. Extensive experiments conducted on three real-world datasets demonstrate that the RGAN model consistently outper-forms many state-of-the-art baselines, in terms of HR@n and NDCG@n.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwill完成签到,获得积分0
1秒前
2秒前
yy关闭了yy文献求助
3秒前
5秒前
sad完成签到,获得积分10
6秒前
小蘑菇应助恶恶么v采纳,获得10
6秒前
李健的小迷弟应助zwww采纳,获得10
6秒前
123321完成签到,获得积分10
6秒前
在水一方应助小杨采纳,获得10
7秒前
流口水完成签到,获得积分10
9秒前
帅气天荷完成签到 ,获得积分10
12秒前
小可爱完成签到,获得积分10
12秒前
xinlei2023完成签到 ,获得积分10
13秒前
SYLH应助zj采纳,获得10
13秒前
15秒前
忐忑的黑猫应助谢耳朵采纳,获得10
16秒前
二世小卒完成签到 ,获得积分10
16秒前
檀123完成签到 ,获得积分10
21秒前
活力灵波发布了新的文献求助10
21秒前
Jasper应助梦潜采纳,获得10
22秒前
22秒前
奋斗的凡完成签到 ,获得积分10
22秒前
22秒前
23秒前
昭歆钰完成签到,获得积分10
25秒前
25秒前
李清水完成签到,获得积分10
25秒前
清欢发布了新的文献求助10
25秒前
26秒前
古古怪界丶黑大帅完成签到,获得积分10
27秒前
受伤哈密瓜完成签到 ,获得积分10
28秒前
李健应助llx采纳,获得10
29秒前
29秒前
丑麒完成签到,获得积分10
32秒前
jingchengke发布了新的文献求助10
32秒前
在水一方应助无奈柚子采纳,获得10
32秒前
芈冖发布了新的文献求助10
32秒前
钟绍兴完成签到,获得积分20
34秒前
34秒前
LRRAM_809发布了新的文献求助10
34秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464375
求助须知:如何正确求助?哪些是违规求助? 3057766
关于积分的说明 9058185
捐赠科研通 2747760
什么是DOI,文献DOI怎么找? 1507609
科研通“疑难数据库(出版商)”最低求助积分说明 696587
邀请新用户注册赠送积分活动 696182