清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An artificial intelligence method for predicting postoperative urinary incontinence based on multiple anatomic parameters of MRI

可解释性 前列腺切除术 人工智能 深度学习 机器学习 计算机科学 尿失禁 特征(语言学) 尿失禁 医学 医学物理学 前列腺癌 外科 内科学 癌症 语言学 哲学
作者
Jiakun Li,Xuemeng Fan,Tong Tang,Elizabeth Wu,Dongyue Wang,Hui Zong,Xianghong Zhou,Yifan Li,Chichen Zhang,Yihang Zhang,Rongrong Wu,Cong Wu,Lu Yang,Bairong Shen
出处
期刊:Heliyon [Elsevier]
卷期号:9 (10): e20337-e20337
标识
DOI:10.1016/j.heliyon.2023.e20337
摘要

BackgroundDeep learning methods are increasingly applied in the medical field; however, their lack of interpretability remains a challenge. Captum is a tool that can be used to interpret neural network models by computing feature importance weights. Although Captum is an interpretable model, it is rarely used to study medical problems, and there is a scarcity of data regarding MRI anatomical measurements for patients with prostate cancer after undergoing Robotic-Assisted Radical Prostatectomy (RARP). Consequently, predictive models for continence that use multiple types of anatomical MRI measurements are limited.MethodsWe explored the energy efficiency of deep learning models for predicting continence by analyzing MRI measurements. We analyzed and compared various statistical models and provided reference examples for the clinical application of interpretable deep-learning models. Patients who underwent RARP at our institution between July 2019 and December 2020 were included in this study. A series of clinical MRI anatomical measurements from these patients was used to discover continence features, and their impact on continence was primarily evaluated using a series of statistical methods and computational models.ResultsAge and six other anatomical measurements were identified as the top seven features of continence by the proposed model UINet7 with an accuracy of 0.97, and the first four of these features were also found by primary statistical analysis.ConclusionsThis study fills the gaps in the in-depth investigation of continence features after RARP due to the limitations of clinical data and applicable models. We provide a pioneering example of the application of deep-learning models to clinical problems. The interpretability analysis of deep learning models has the potential for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方白秋完成签到,获得积分10
4秒前
5秒前
李健应助高君奇采纳,获得10
16秒前
碧蓝可仁完成签到 ,获得积分10
39秒前
nuliguan完成签到 ,获得积分10
41秒前
xun完成签到,获得积分20
54秒前
小马甲应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
高君奇发布了新的文献求助10
1分钟前
薛得豪完成签到,获得积分10
1分钟前
1分钟前
在水一方应助高君奇采纳,获得10
2分钟前
努力的兔子1987完成签到 ,获得积分10
2分钟前
在水一方应助白华苍松采纳,获得10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
风中的香萱完成签到 ,获得积分10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
4分钟前
科研通AI5应助甜蜜如容采纳,获得10
4分钟前
4分钟前
甜蜜如容发布了新的文献求助10
4分钟前
Artin发布了新的文献求助30
4分钟前
Artin完成签到,获得积分10
4分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
风中的香萱关注了科研通微信公众号
5分钟前
5分钟前
qq完成签到 ,获得积分10
5分钟前
5分钟前
欲望被鬼应助白华苍松采纳,获得10
5分钟前
Yesaniar发布了新的文献求助10
5分钟前
juan完成签到 ,获得积分10
5分钟前
万能图书馆应助Yesaniar采纳,获得10
5分钟前
称心的海蓝完成签到 ,获得积分10
6分钟前
SYLH应助白华苍松采纳,获得10
6分钟前
6分钟前
zyp应助无辜的夏山采纳,获得10
7分钟前
8分钟前
plum发布了新的文献求助10
8分钟前
RC_Wang应助白华苍松采纳,获得10
8分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516380
求助须知:如何正确求助?哪些是违规求助? 3098637
关于积分的说明 9240247
捐赠科研通 2793766
什么是DOI,文献DOI怎么找? 1533239
邀请新用户注册赠送积分活动 712622
科研通“疑难数据库(出版商)”最低求助积分说明 707387