Nomogram for Predicting Central Nervous System Infection Following Traumatic Brain Injury in the Elderly

列线图 医学 创伤性脑损伤 逻辑回归 接收机工作特性 单变量分析 人口 回顾性队列研究 曲线下面积 内科学 多元分析 急诊医学 环境卫生 精神科
作者
Wenjian Zhao,Shaochun Guo,Chao Wang,Yuan Wang,Yunpeng Kou,Sufang Tian,Yi‐fan Qi,Jianliang Pang,Wei Zhou,Na Wang,Jinghui Liu,Yulong Zhai,Peigang Ji,Yang Jiao,Chunmei Fan,Min Chao,Zhicheng Fan,Yan Qu,Liang Wang
出处
期刊:World Neurosurgery [Elsevier]
标识
DOI:10.1016/j.wneu.2023.10.088
摘要

This study aims to identify risk factors for central nervous system (CNS) infection in elderly patients hospitalized with traumatic brain injury (TBI) and to develop a reliable predictive tool for assessing the likelihood of CNS infection in this population. We conducted a retrospective study on 742 elderly TBI patients treated at Tangdu Hospital, China. Clinical data was randomly split into training and validation sets (7:3 ratio). By conducting univariate and multivariate logistic regression analysis in the training set, we identified a list of variables to develop a nomogram for predicting the risk of CNS infection. We evaluated the performance of the predictive model in both cohorts respectively, using Receiver Operating Characteristics (ROC) curves, calibration curves, and Decision Curve Analysis (DCA). Results of the logistic analysis in the training set indicated that surgical intervention (p=0.007), red blood cell (RBC) count (p=0.019), C-reactive protein (CRP) concentration (p<0.001), and cerebrospinal fluid (CSF) leakage (p<0.001) significantly predicted the occurrence of CNS infection in elderly TBI patients. The model constructed based on these variables had high predictive capability (AUC-training=0.832; AUC-validation=0.824) as well as clinical utility. A nomogram constructed based on several key predictors reasonably predicts the risk of CNS infection in elderly TBI patients upon hospital admission. The model of the nanogram may contribute to timely interventions and improve health outcomes among affected individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaoyaoyao完成签到 ,获得积分10
1秒前
1秒前
赘婿应助lvsehx采纳,获得10
1秒前
2秒前
水悟子完成签到 ,获得积分10
3秒前
5秒前
深情安青应助晓晗采纳,获得10
6秒前
6秒前
Owen应助GUAN采纳,获得10
7秒前
LL完成签到,获得积分10
7秒前
888886kn发布了新的文献求助10
7秒前
jianwuzhou完成签到,获得积分10
8秒前
田茂青发布了新的文献求助10
10秒前
慕青应助月亮夏的夏采纳,获得10
11秒前
www完成签到 ,获得积分10
11秒前
11秒前
WANG完成签到,获得积分10
11秒前
11秒前
深情安青应助哭泣的冰海采纳,获得10
12秒前
脑洞疼应助晗晗有酒窝采纳,获得10
12秒前
12秒前
之和完成签到,获得积分20
13秒前
扶扶发布了新的文献求助10
13秒前
慕青应助文艺的曼柔采纳,获得10
13秒前
14秒前
SUN完成签到,获得积分10
14秒前
墨凡应助Master采纳,获得10
14秒前
stArfish发布了新的文献求助10
15秒前
15秒前
16秒前
王云云完成签到 ,获得积分10
16秒前
17秒前
17秒前
火龙果完成签到,获得积分10
17秒前
17秒前
17秒前
biubiu完成签到,获得积分10
18秒前
852应助Apple采纳,获得10
18秒前
CPPP发布了新的文献求助10
18秒前
Sylvia_J完成签到 ,获得积分10
18秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
Development and Industrialization of Stereoregular Polynorbornenes 500
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3418548
求助须知:如何正确求助?哪些是违规求助? 3020100
关于积分的说明 8890635
捐赠科研通 2707422
什么是DOI,文献DOI怎么找? 1484820
科研通“疑难数据库(出版商)”最低求助积分说明 686165
邀请新用户注册赠送积分活动 681355