CLDG: Contrastive Learning on Dynamic Graphs

计算机科学 图形 理论计算机科学 统计的 人工智能 特征学习 机器学习 数学 统计
作者
Yiming Xu,Bin Shi,Teng Ma,Bo Dong,Haoyi Zhou,Qinghua Zheng
标识
DOI:10.1109/icde55515.2023.00059
摘要

The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph contrastive learning. It constructs self-supervised signals by maximizing the mutual information between the statistic graph's augmentation views. However, the semantics and labels may change within the augmentation process, causing a significant performance drop in downstream tasks. This drawback becomes greatly magnified on dynamic graphs. To address this problem, we designed a simple yet effective framework named CLDG. Firstly, we elaborate that dynamic graphs have temporal translation invariance at different levels. Then, we proposed a sampling layer to extract the temporally-persistent signals. It will encourage the node to maintain consistent local and global representations, i.e., temporal translation invariance under the timespan views. The extensive experiments demonstrate the effectiveness and efficiency of the method on seven datasets by outperforming eight unsupervised state-of-the-art baselines and showing competitiveness against four semi-supervised methods. Compared with the existing dynamic graph method, the number of model parameters and training time is reduced by an average of 2,001.86 times and 130.31 times on seven datasets, respectively. The code and data are available at: https://github.com/yimingxu24/CLDG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
wzy完成签到,获得积分10
3秒前
DHL发布了新的文献求助10
3秒前
4秒前
Owen应助刻苦的三德采纳,获得10
5秒前
青松子完成签到,获得积分10
6秒前
comput_math完成签到,获得积分10
7秒前
7秒前
风趣的凌珍完成签到,获得积分20
7秒前
李耀华发布了新的文献求助10
9秒前
刘华完成签到,获得积分20
9秒前
浮游应助天真惜天采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
浩铭发布了新的文献求助10
12秒前
12秒前
呵呵呵完成签到,获得积分10
12秒前
13秒前
李健应助科研欢采纳,获得10
13秒前
13秒前
13秒前
14秒前
wanci应助Wwww采纳,获得10
14秒前
怕黑鲂发布了新的文献求助10
15秒前
yu完成签到,获得积分10
16秒前
义气晓凡发布了新的文献求助10
17秒前
17秒前
18秒前
玉屏风发布了新的文献求助10
18秒前
lynn发布了新的文献求助10
18秒前
斯文败类应助威朗普采纳,获得10
18秒前
共享精神应助独特秀采纳,获得10
18秒前
洋葱王子发布了新的文献求助10
19秒前
20秒前
yu发布了新的文献求助10
20秒前
21秒前
21秒前
哈基米德举报陈帅求助涉嫌违规
21秒前
万能图书馆应助周LL采纳,获得10
21秒前
勾勾1991发布了新的文献求助20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430425
求助须知:如何正确求助?哪些是违规求助? 4543610
关于积分的说明 14188243
捐赠科研通 4461860
什么是DOI,文献DOI怎么找? 2446326
邀请新用户注册赠送积分活动 1437699
关于科研通互助平台的介绍 1414459