环境科学
微塑料
水文学(农业)
生态学
地质学
生物
岩土工程
作者
Chang Li,Yi Shi,Dan Luo,Mengen Kang,Yujian Li,Yué Huang,Xue Bai
出处
期刊:Water Research
[Elsevier]
日期:2023-07-26
卷期号:243: 120418-120418
被引量:16
标识
DOI:10.1016/j.watres.2023.120418
摘要
Microplastic footprint in urban river networks can be disturbed by multiple urbanization features, and regional river structures are generally overlooked. In this research, we analyzed the distribution of microplastics and potential impact pattern of river structures on it in a typical urban river network in Nanjing, China. Surface waters of the river network were jointly detected by multiple methods, and the Renkonen similarity index was used to study spatial variabilities of microplastics characteristics. Microplastics were ubiquitous and abundant, showing five (>50 μm) and six (20∼50 μm) hotspots, and heterogeneities in the shape and type of microplastics larger than 100 μm were prominent, presumably influenced by river network scale and connectivity. River structure parameters associated with network connectivity were obtained by combining graph theory and an entropy-based set-pair analysis model. Aiming at the action pathway of river structures, by using correlation and partial least squares regression analysis, we found that river node (confluences and sluices) ratio, river frequency, river network density, and water system circularity were significantly positively correlated with microplastic abundance, and confluences with poor connectivity had a greater indirect intervention intensity on the microplastic distribution. The land use characteristics dominated the fitting of microplastic abundance, which was about 1.2 times better than river structures, and the comprehensive land use intensity and river network connectivity were the critical factors, respectively. Potential ecological risks of microplastics were evaluated, resulting in relatively severe levels. This study proposed targeted measures to control urban microplastic pollution by combining the perspective of river network characteristics. To summarize, our exploration of microplastic footprint based on urban river network structures from the perspective of river network connectivity provides new insights into microplastic management.
科研通智能强力驱动
Strongly Powered by AbleSci AI