Multivariate Time Series Forecasting Using Multiscale Recurrent Networks With Scale Attention and Cross-Scale Guidance

计算机科学 比例(比率) 循环神经网络 人工智能 任务(项目管理) 机器学习 深度学习 数据挖掘 过程(计算) 系列(地层学) 时间序列 人工神经网络 物理 管理 量子力学 操作系统 古生物学 生物 经济
作者
Qiang Guo,L. Z. Fang,Ren Wang,Caiming Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:3
标识
DOI:10.1109/tnnls.2023.3326140
摘要

Multivariate time series (MTS) forecasting is considered as a challenging task due to complex and nonlinear interdependencies between time steps and series. With the advance of deep learning, significant efforts have been made to model long-term and short-term temporal patterns hidden in historical information by recurrent neural networks (RNNs) with a temporal attention mechanism. Although various forecasting models have been developed, most of them are single-scale oriented, resulting in scale information loss. In this article, we seamlessly integrate multiscale analysis into deep learning frameworks to build scale-aware recurrent networks and propose two multiscale recurrent network (MRN) models for MTS forecasting. The first model called MRN-SA adopts a scale attention mechanism to dynamically select the most relevant information from different scales and simultaneously employs input attention and temporal attention to make predictions. The second one named as MRN-CSG introduces a novel cross-scale guidance mechanism to exploit the information from coarse scale to guide the decoding process at fine scale, which results in a lightweight and more easily trained model without obvious loss of accuracy. Extensive experimental results demonstrate that both MRN-SA and MRN-CSG can achieve state-of-the-art performance on five typical MTS datasets in different domains. The source codes will be publicly available at https://github.com/qguo2010/MRN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
刚刚
吕洺旭应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
吕洺旭应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
华仔应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
1秒前
KK完成签到,获得积分10
2秒前
霸气的玉兰完成签到 ,获得积分10
2秒前
maoaq完成签到 ,获得积分10
4秒前
CodeCraft应助yiliu采纳,获得10
4秒前
4秒前
延娜完成签到,获得积分10
5秒前
Stella完成签到,获得积分10
6秒前
6秒前
科研小白完成签到 ,获得积分10
7秒前
冬藏发布了新的文献求助10
7秒前
Xsterm完成签到,获得积分10
8秒前
聪明蛋子发布了新的文献求助10
8秒前
衣裳薄完成签到,获得积分10
9秒前
脑洞疼应助水123采纳,获得10
9秒前
蓝色的纪念完成签到,获得积分10
12秒前
13秒前
Weilang发布了新的文献求助30
13秒前
宝丁发布了新的文献求助10
13秒前
Snoopy发布了新的文献求助50
14秒前
承乐应助小橘子采纳,获得10
16秒前
16秒前
天天快乐应助Rose采纳,获得10
17秒前
过勇完成签到,获得积分20
17秒前
俏皮元珊完成签到 ,获得积分10
18秒前
18秒前
yiliu发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832