Multivariate Time Series Forecasting Using Multiscale Recurrent Networks With Scale Attention and Cross-Scale Guidance

计算机科学 比例(比率) 循环神经网络 人工智能 任务(项目管理) 机器学习 深度学习 数据挖掘 过程(计算) 系列(地层学) 时间序列 人工神经网络 物理 管理 量子力学 操作系统 古生物学 生物 经济
作者
Qiang Guo,L. Z. Fang,Ren Wang,Caiming Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:3
标识
DOI:10.1109/tnnls.2023.3326140
摘要

Multivariate time series (MTS) forecasting is considered as a challenging task due to complex and nonlinear interdependencies between time steps and series. With the advance of deep learning, significant efforts have been made to model long-term and short-term temporal patterns hidden in historical information by recurrent neural networks (RNNs) with a temporal attention mechanism. Although various forecasting models have been developed, most of them are single-scale oriented, resulting in scale information loss. In this article, we seamlessly integrate multiscale analysis into deep learning frameworks to build scale-aware recurrent networks and propose two multiscale recurrent network (MRN) models for MTS forecasting. The first model called MRN-SA adopts a scale attention mechanism to dynamically select the most relevant information from different scales and simultaneously employs input attention and temporal attention to make predictions. The second one named as MRN-CSG introduces a novel cross-scale guidance mechanism to exploit the information from coarse scale to guide the decoding process at fine scale, which results in a lightweight and more easily trained model without obvious loss of accuracy. Extensive experimental results demonstrate that both MRN-SA and MRN-CSG can achieve state-of-the-art performance on five typical MTS datasets in different domains. The source codes will be publicly available at https://github.com/qguo2010/MRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Arthur完成签到,获得积分10
1秒前
追尾的猫完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
没事哒完成签到,获得积分10
2秒前
vegetable发布了新的文献求助10
3秒前
CodeCraft应助欣喜谷槐采纳,获得10
4秒前
axi发布了新的文献求助10
6秒前
CCC发布了新的文献求助10
6秒前
大个应助张玉雪采纳,获得10
6秒前
大个应助sabery采纳,获得10
6秒前
muttcy完成签到,获得积分10
7秒前
科研通AI6应助米白采纳,获得30
7秒前
8秒前
尔雅完成签到,获得积分10
9秒前
9秒前
vegetable完成签到,获得积分10
9秒前
10秒前
矮小的惜天完成签到,获得积分10
10秒前
大模型应助同城代打采纳,获得10
10秒前
虚幻小凡完成签到,获得积分10
10秒前
11秒前
陈柚瑾发布了新的文献求助10
12秒前
SciGPT应助憨憨芸采纳,获得10
13秒前
CCC完成签到,获得积分10
13秒前
闪闪盼兰发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
没事哒发布了新的文献求助10
15秒前
科研通AI5应助xiaozhou采纳,获得10
15秒前
科研通AI5应助xiaoliu采纳,获得10
16秒前
想要毕业完成签到,获得积分10
18秒前
刚睡着就天亮完成签到 ,获得积分10
18秒前
19秒前
唐泽雪穗应助CCC采纳,获得10
19秒前
今后应助aka鱼鱼鱼采纳,获得10
20秒前
兴奋念真完成签到,获得积分20
21秒前
sabery发布了新的文献求助10
21秒前
天马行空完成签到,获得积分10
22秒前
同城代打发布了新的文献求助10
22秒前
lily完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5056591
求助须知:如何正确求助?哪些是违规求助? 4282081
关于积分的说明 13344888
捐赠科研通 4099030
什么是DOI,文献DOI怎么找? 2243907
邀请新用户注册赠送积分活动 1250063
关于科研通互助平台的介绍 1180451