Latent fingerprint and Iris fusion for enhancement of performance of human identification system

生物识别 计算机科学 指纹(计算) 鉴定(生物学) 人工智能 虹膜识别 情态动词 匹配(统计) 模式识别(心理学) 机器学习 数据挖掘 数学 统计 化学 植物 高分子化学 生物
作者
Shashi Shreya,Kakali Chatterjee
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:235: 121208-121208 被引量:2
标识
DOI:10.1016/j.eswa.2023.121208
摘要

The biometric recognition system is a highly precise human identification system as per Federal Bureau of Investigation (FBI). Latent fingerprint biometrics are an efficient human identification system for criminals based on available crime evidence shreds. However, biometric trait limitations such as noise in sensed data, lack of individuality, and intra-class variation result in a low matching score, which has a negative impact on the identification as well as investigation process. The increasing demand for biometric systems for accurate identification has resulted in the development of unimodal biometric systems to multimodal biometric systems, particularly when the biometric inputs are considered as evidence of any societal crime. This paper focuses on showing the advantage of using modal based approach over the threshold based and development of a multimodal biometric framework for achieving high accuracy in human identification. The comparison of the identification rate/recognition probability of modal-based approach (87.3%) is high in compared to threshold-based approach (80%). Latent fingerprint biometric is fused with iris biometric using score level fusion (sum rule and product rule) rules. With the experimental results, it has been found that highest accuracy rate (91.15%) in proposed identification framework can be achieved while using sum rule. The proposed framework is useful in a societal crime scenario, as assumed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助SUMING采纳,获得10
刚刚
persist完成签到,获得积分10
刚刚
碧蓝藏鸟完成签到,获得积分10
刚刚
刚刚
秀丽的大门完成签到,获得积分10
刚刚
Leo发布了新的文献求助10
1秒前
XiaoLiu举报KSGGS求助涉嫌违规
1秒前
JamesPei应助晚风采纳,获得10
1秒前
Micheal完成签到 ,获得积分10
1秒前
2秒前
科研通AI6应助ZC采纳,获得10
2秒前
脑洞疼应助小吴要发SCI采纳,获得30
2秒前
温婉的宛儿关注了科研通微信公众号
2秒前
Phil发布了新的文献求助10
3秒前
雨声完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助丽丽采纳,获得10
4秒前
haha发布了新的文献求助30
4秒前
5秒前
batman发布了新的文献求助10
6秒前
7秒前
满集发布了新的文献求助10
7秒前
科研通AI5应助小芦铃采纳,获得10
7秒前
你好完成签到,获得积分10
8秒前
8秒前
Jasmine发布了新的文献求助10
8秒前
大个应助灰光呀采纳,获得10
9秒前
顺利问玉发布了新的文献求助10
10秒前
JamesPei应助娜罗的名单采纳,获得10
10秒前
诸葛藏藏完成签到,获得积分10
10秒前
为不争完成签到,获得积分10
10秒前
花花发布了新的文献求助10
11秒前
SciGPT应助笑点低的荔枝采纳,获得10
11秒前
11秒前
Joiceee完成签到 ,获得积分10
11秒前
12秒前
orixero应助lllm采纳,获得10
12秒前
传奇3应助黎明的曙光采纳,获得10
13秒前
13秒前
华仔应助batman采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252162
求助须知:如何正确求助?哪些是违规求助? 4415980
关于积分的说明 13748195
捐赠科研通 4287828
什么是DOI,文献DOI怎么找? 2352660
邀请新用户注册赠送积分活动 1349440
关于科研通互助平台的介绍 1308945