材料科学
非晶态金属
无定形固体
原子单位
纳米尺度
化学物理
扫描透射电子显微镜
退火(玻璃)
相(物质)
纳米
放松(心理学)
透射电子显微镜
纳米技术
结晶学
复合材料
化学
社会心理学
物理
量子力学
有机化学
心理学
作者
Sangjun Kang,Vanessa Wollersen,Christian Minnert,Karsten Durst,Hyoung Seop Kim,Christian Kübel,Xiaoke Mu
出处
期刊:Acta Materialia
[Elsevier BV]
日期:2023-11-04
卷期号:263: 119495-119495
被引量:5
标识
DOI:10.1016/j.actamat.2023.119495
摘要
Amorphous materials, e.g., polymers, metallic and oxidic glasses, consist of heterogeneous atomic/molecular packing at the nanoscale. Spatial variation of the local structure plays an important role in determining material properties. Experimentally probing the local atomic structure within the amorphous phase has been one of the main challenges for material research. Here, we present a new approach to characterize the local atomic structure and map structural variants in the amorphous phase using machine learning (ML) aided four dimensional-scanning transmission electron microscopy (4D-STEM). We utilized nonnegative matrix factorization (NMF) to identify the local structural types of metallic glasses from the 4D-STEM dataset. Using Fe-based metallic glasses as a model system, we demonstrate that two basic structural types, one with a more liquid-like and another with a more solid-like structure, are distributed throughout the glass with a characteristic length scale of a few nanometers. Thermal annealing induces a change in their distribution and relative population but without the appearance of any additional phase. This provides new insight into the relaxation phenomena of metallic glass and solid experimental evidence for the theoretical hypothesis on atomic packing in glassy structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI