An Efficient and Lightweight Deep Learning Model for Human Activity Recognition on Raw Sensor Data in Uncontrolled Environment

计算机科学 活动识别 卷积神经网络 人工智能 深度学习 卷积(计算机科学) 架空(工程) 数据集 特征(语言学) 过程(计算) 机器学习 人工神经网络 数据建模 特征提取 原始数据 模式识别(心理学) 数据库 语言学 哲学 程序设计语言 操作系统
作者
Nurul Amin Choudhury,Badal Soni
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (20): 25579-25586 被引量:5
标识
DOI:10.1109/jsen.2023.3312478
摘要

Human activity recognition (HAR) is the process of identifying daily living activities using a set of sensors and optimal learning algorithms. It is a convoluted process, as there is no straightforward way to associate human action with the induced sensor data. Most of the work on HAR is done on highly augmented and pre-processed data. It optimizes performance but introduces intense data pre-processing and feature engineering overhead in real-time activity recognition. This article proposes an efficient and lightweight CNN-long short term memory (LSTM) model for enhanced activity classification on raw sensor data in an uncontrolled environment. It used convolution cum memory functionalities of the CNN-LSTM layer to extract spatial and temporal features for distinguished feature analysis and also classifies different human activities using dense classification layers. A state-of-the-art inbuilt smartphone sensor-based HAR dataset is also generated for six daily living activities in an uncontrolled environment for getting real-world activity data. With zero data pre-processing and augmentation, our proposed 1-D convolution (Conv1D)-based CNN-LSTM model out-completed all the incorporated conventional models and achieved the highest accuracy of 98% in optimized computational time. Also, the loss on real-world test data was minimum, with the loss perimeter advantage of 68% and 158% with LSTM and artificial neural network (ANN) models, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珂珂发布了新的文献求助10
1秒前
1秒前
迟大猫应助我是站长才怪采纳,获得30
1秒前
2秒前
BaekHyun发布了新的文献求助10
2秒前
背后翠梅发布了新的文献求助30
2秒前
CCR发布了新的文献求助10
2秒前
su发布了新的文献求助10
4秒前
善学以致用应助钰c采纳,获得10
4秒前
Fundamental完成签到,获得积分20
5秒前
通~发布了新的文献求助10
5秒前
Akim应助阿屁屁猪采纳,获得10
5秒前
6秒前
细雨听风发布了新的文献求助10
6秒前
6秒前
英俊的小松鼠完成签到,获得积分10
6秒前
7秒前
9秒前
cc完成签到,获得积分20
9秒前
10秒前
10秒前
背后翠梅完成签到,获得积分10
10秒前
10秒前
涛涛发布了新的文献求助10
10秒前
lan完成签到,获得积分10
10秒前
皮皮完成签到 ,获得积分10
11秒前
ChiDaiOLD完成签到,获得积分10
11秒前
11秒前
情怀应助顺顺采纳,获得10
11秒前
Fundamental发布了新的文献求助10
13秒前
咩咩发布了新的文献求助10
13秒前
kingmin应助金鸡奖采纳,获得10
13秒前
喜悦蚂蚁完成签到,获得积分10
14秒前
赘婿应助拼搏向前采纳,获得10
14秒前
14秒前
14秒前
路十三完成签到 ,获得积分10
15秒前
Lucas应助Sophia采纳,获得10
16秒前
lan发布了新的文献求助10
16秒前
金容发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808