A transformer-based ensemble framework for the prediction of protein-protein interaction sites

可解释性 计算机科学 机器学习 人工智能 集成学习 变压器 数据挖掘 工程类 电气工程 电压
作者
Minjie Mou,Ziqi Pan,Zhenglong Zhou,Lingyan Zheng,Hanyu Zhang,Shuiyang Shi,Fengcheng Li,Xiuna Sun,Feng Zhu
出处
期刊:Research [AAAS00]
卷期号:6
标识
DOI:10.34133/research.0240
摘要

The identification of protein–protein interaction (PPI) sites is essential in the research of protein function and the discovery of new drugs. So far, a variety of computational tools based on machine learning have been developed to accelerate the identification of PPI sites. However, existing methods suffer from the low predictive accuracy or the limited scope of application. Specifically, some methods learned only global or local sequential features, leading to low predictive accuracy, while others achieved improved performance by extracting residue interactions from structures but were limited in their application scope for the serious dependence on precise structure information. There is an urgent need to develop a method that integrates comprehensive information to realize proteome-wide accurate profiling of PPI sites. Herein, a novel ensemble framework for PPI sites prediction, EnsemPPIS, was therefore proposed based on transformer and gated convolutional networks. EnsemPPIS can effectively capture not only global and local patterns but also residue interactions. Specifically, EnsemPPIS was unique in (a) extracting residue interactions from protein sequences with transformer and (b) further integrating global and local sequential features with the ensemble learning strategy. Compared with various existing methods, EnsemPPIS exhibited either superior performance or broader applicability on multiple PPI sites prediction tasks. Moreover, pattern analysis based on the interpretability of EnsemPPIS demonstrated that EnsemPPIS was fully capable of learning residue interactions within the local structure of PPI sites using only sequence information. The web server of EnsemPPIS is freely available at http://idrblab.org/ensemppis .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
melisa完成签到,获得积分10
刚刚
H1998发布了新的文献求助10
2秒前
科研通AI2S应助啊哦嘿采纳,获得10
3秒前
斯文败类应助德尔塔捱斯采纳,获得10
4秒前
4秒前
6秒前
tx完成签到,获得积分10
7秒前
9秒前
mof发布了新的文献求助10
9秒前
叮叮车完成签到 ,获得积分10
10秒前
难摧发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
小白发布了新的文献求助10
14秒前
爆米花应助刘星星采纳,获得10
14秒前
赵灵枫完成签到,获得积分20
15秒前
林夕完成签到,获得积分10
16秒前
赵灵枫发布了新的文献求助10
17秒前
lin完成签到,获得积分10
17秒前
18秒前
谦让马里奥完成签到,获得积分10
18秒前
wxp发布了新的文献求助10
19秒前
19秒前
一口饺子完成签到,获得积分10
20秒前
20秒前
21秒前
领导范儿应助mof采纳,获得10
21秒前
善良的湘完成签到,获得积分10
23秒前
不安的晓灵完成签到 ,获得积分10
25秒前
精明的寒天完成签到,获得积分10
25秒前
今后应助ured采纳,获得10
25秒前
刘星星发布了新的文献求助10
25秒前
27秒前
邓亚楠发布了新的文献求助10
27秒前
DiJia完成签到 ,获得积分10
28秒前
29秒前
小晓完成签到,获得积分10
29秒前
知行合一完成签到 ,获得积分10
29秒前
29秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291