Accelerated Informed RRT*: Fast and Asymptotically Path Planning Method Combined with RRT*-Connect and APF

计算机科学 启发式 运动规划 路径(计算) 随机树 数学优化 采样(信号处理) 状态空间 人工智能 算法 机器人 数学 计算机视觉 统计 滤波器(信号处理) 程序设计语言 操作系统
作者
Zhixin Tu,Wenbing Zhuang,Yuquan Leng,Chenglong Fu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 279-292
标识
DOI:10.1007/978-981-99-6501-4_24
摘要

In recent years, path planning algorithms have played a crucial role in addressing complex navigation problems in various domains, including robotics, autonomous vehicles, and virtual simulations. This abstract introduces a improved path planning algorithm called Informed RRT*-connect based on APF, which combines the strengths of the fast bidirectional rapidly-exploring random tree (RRT-connect) algorithm and the informed RRT* algorithm. The proposed algorithm aims to efficiently find collision-free paths with less iterations and time while minimizing the path length. Unlike traditional RRT-based algorithms, Informed RRT*-connect based on Artificial Potential Fields (APF) incorporates a bidirectional connection and rewiring of a new sampling point to explore the search space. This enables the algorithm to connect both the start and goal nodes more effectively and quickly to find a initial solution, reducing the search time and provide a better initial heuristics sapling for the next optimal steps. Furthermore, Informed RRT*-connect introduces an informed sampling strategy that biases the sampling towards areas of the configuration space likely to yield better paths. This approach significantly reduces the exploration time to find a path and enhances the ability to discover optimal paths efficiently. To evaluate the effectiveness of the Informed RRT*-connect algorithm, we conducted the simulation experiments on two different experiment protocol. The results demonstrate that our approach outperforms existing state-of-the-art algorithms in terms of both planning efficiency and solution optimality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助zhui采纳,获得10
1秒前
芒果发布了新的文献求助10
1秒前
2秒前
前百年253完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
xiaoguai完成签到 ,获得积分10
4秒前
甜蜜晓绿发布了新的文献求助10
6秒前
6秒前
Bruce发布了新的文献求助10
6秒前
7秒前
7秒前
MYhang完成签到,获得积分10
7秒前
wxd发布了新的文献求助10
9秒前
9秒前
哈哈发布了新的文献求助10
10秒前
10秒前
西哈哈发布了新的文献求助10
10秒前
科研通AI5应助lili采纳,获得10
10秒前
郑嘻嘻完成签到,获得积分10
10秒前
10秒前
FEI完成签到,获得积分20
10秒前
12秒前
英姑应助顺利的乐枫采纳,获得10
12秒前
12秒前
12秒前
13秒前
木子加y完成签到 ,获得积分10
14秒前
小蘑菇应助Sally采纳,获得10
14秒前
命运的X号完成签到,获得积分10
14秒前
yangyong发布了新的文献求助10
15秒前
15秒前
图图烤肉完成签到,获得积分10
16秒前
ajiaxi完成签到,获得积分10
16秒前
Bruce完成签到,获得积分10
17秒前
英俊的水彤完成签到 ,获得积分10
17秒前
刘金金完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794