亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerated Informed RRT*: Fast and Asymptotically Path Planning Method Combined with RRT*-Connect and APF

计算机科学 启发式 运动规划 路径(计算) 随机树 数学优化 采样(信号处理) 状态空间 人工智能 算法 机器人 数学 计算机视觉 操作系统 程序设计语言 滤波器(信号处理) 统计
作者
Zhixin Tu,Wenbing Zhuang,Yuquan Leng,Chenglong Fu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 279-292
标识
DOI:10.1007/978-981-99-6501-4_24
摘要

In recent years, path planning algorithms have played a crucial role in addressing complex navigation problems in various domains, including robotics, autonomous vehicles, and virtual simulations. This abstract introduces a improved path planning algorithm called Informed RRT*-connect based on APF, which combines the strengths of the fast bidirectional rapidly-exploring random tree (RRT-connect) algorithm and the informed RRT* algorithm. The proposed algorithm aims to efficiently find collision-free paths with less iterations and time while minimizing the path length. Unlike traditional RRT-based algorithms, Informed RRT*-connect based on Artificial Potential Fields (APF) incorporates a bidirectional connection and rewiring of a new sampling point to explore the search space. This enables the algorithm to connect both the start and goal nodes more effectively and quickly to find a initial solution, reducing the search time and provide a better initial heuristics sapling for the next optimal steps. Furthermore, Informed RRT*-connect introduces an informed sampling strategy that biases the sampling towards areas of the configuration space likely to yield better paths. This approach significantly reduces the exploration time to find a path and enhances the ability to discover optimal paths efficiently. To evaluate the effectiveness of the Informed RRT*-connect algorithm, we conducted the simulation experiments on two different experiment protocol. The results demonstrate that our approach outperforms existing state-of-the-art algorithms in terms of both planning efficiency and solution optimality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Henvy完成签到,获得积分10
3秒前
3秒前
10秒前
13秒前
Lebpom发布了新的文献求助10
15秒前
20秒前
22秒前
yzm发布了新的文献求助10
25秒前
iDong完成签到 ,获得积分10
29秒前
大胆的碧菡完成签到,获得积分10
33秒前
Ava应助Lebpom采纳,获得10
36秒前
38秒前
39秒前
anne完成签到 ,获得积分10
39秒前
杨杨发布了新的文献求助10
43秒前
44秒前
45秒前
52秒前
orixero应助杨杨采纳,获得10
56秒前
852应助Amanda采纳,获得10
56秒前
59秒前
在水一方应助开放的乐蓉采纳,获得10
59秒前
量子星尘发布了新的文献求助10
1分钟前
隐形曼青应助Sunny采纳,获得10
1分钟前
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
星辰大海应助机灵的幼菱采纳,获得10
1分钟前
1分钟前
1分钟前
Sunny发布了新的文献求助10
1分钟前
Criminology34完成签到,获得积分0
1分钟前
Lebpom发布了新的文献求助10
1分钟前
1分钟前
1分钟前
大模型应助Lebpom采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746562
求助须知:如何正确求助?哪些是违规求助? 5436195
关于积分的说明 15355651
捐赠科研通 4886597
什么是DOI,文献DOI怎么找? 2627322
邀请新用户注册赠送积分活动 1575805
关于科研通互助平台的介绍 1532538