The Feasibility of Deep Learning–Based Reconstruction for Low-Tube-Voltage CT Angiography for Transcatheter Aortic Valve Implantation

医学 放射科 主动脉瓣 血管造影 计算机断层血管造影 心脏病学
作者
T. Kojima,Yuzo Yamasaki,Yuko Matsuura,Ryoji Mikayama,Takashi Shirasaka,Masatoshi Kondo,Takeshi Kamitani,Toyoyuki Kato,Kousei Ishigami,Hidetake Yabuuchi
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
被引量:2
标识
DOI:10.1097/rct.0000000000001525
摘要

Objective The purpose of this study is to evaluate the efficacy of deep learning reconstruction (DLR) on low-tube-voltage computed tomographic angiography (CTA) for transcatheter aortic valve implantation (TAVI). Methods We enrolled 30 patients who underwent TAVI-CT on a 320-row CT scanner. Electrocardiogram-gated coronary CTA (CCTA) was performed at 100 kV, followed by nongated aortoiliac CTA at 80 kV using a single bolus of contrast material. We used hybrid-iterative reconstruction (HIR), model-based IR (MBIR), and DLR to reconstruct these images. The contrast-to-noise ratios (CNRs) were calculated. Five-point scales were used for the overall image quality analysis. The diameter of the aortic annulus was measured in each reconstructed image, and we compared the interobserver and intraobserver agreements. Results In the CCTA, the CNR and image quality score for DLR were significantly higher than those for HIR and MBIR ( P < 0.01). In the aortoiliac CTA, the CNR for DLR was significantly higher than that for HIR ( P < 0.01) and significantly lower than that for MBIR ( P ≤ 0.02). The image quality score for DLR was significantly higher than that for HIR ( P < 0.01). No significant differences were observed between the image quality scores for DLR and MBIR. The measured aortic annulus diameter had high interobserver and intraobserver agreement regardless of the reconstruction method (all intraclass correlation coefficients, >0.89). Conclusions In low tube voltage TAVI-CT, DLR provides higher image quality than HIR, and DLR provides higher image quality than MBIR in CCTA and is visually comparable to MBIR in aortoiliac CTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助智智采纳,获得10
1秒前
1秒前
樊念烟完成签到,获得积分10
1秒前
2秒前
徐墨玄关注了科研通微信公众号
2秒前
科研菜鸟发布了新的文献求助10
2秒前
顾矜应助感性的不惜采纳,获得10
2秒前
Clover04应助橘子橙子采纳,获得10
5秒前
赘婿应助司徒无剑采纳,获得10
5秒前
5秒前
樊念烟发布了新的文献求助10
5秒前
lily完成签到,获得积分10
6秒前
宪珂完成签到 ,获得积分20
6秒前
淡淡的小懒虫完成签到,获得积分10
6秒前
yan完成签到 ,获得积分10
8秒前
8秒前
9秒前
李爱国应助ljforever采纳,获得10
9秒前
9秒前
10秒前
宪珂关注了科研通微信公众号
10秒前
10秒前
11秒前
害羞便当完成签到 ,获得积分10
12秒前
泡泡球发布了新的文献求助10
13秒前
辛勤的芯完成签到,获得积分20
14秒前
amasuke完成签到,获得积分10
14秒前
14秒前
李健的小迷弟应助heier999采纳,获得10
14秒前
Ulysses发布了新的文献求助10
14秒前
染九发布了新的文献求助10
15秒前
15秒前
Jane完成签到,获得积分20
15秒前
大个应助ark861023采纳,获得10
15秒前
上官若男应助司徒无剑采纳,获得10
16秒前
慕青应助edc采纳,获得10
16秒前
高工发布了新的文献求助10
17秒前
txy完成签到,获得积分10
17秒前
18秒前
Jane发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825