The Feasibility of Deep Learning–Based Reconstruction for Low-Tube-Voltage CT Angiography for Transcatheter Aortic Valve Implantation

医学 放射科 主动脉瓣 血管造影 计算机断层血管造影 心脏病学
作者
T. Kojima,Yuzo Yamasaki,Yuko Matsuura,Ryoji Mikayama,Takashi Shirasaka,Masatoshi Kondo,Takeshi Kamitani,Toyoyuki Kato,Kousei Ishigami,Hidetake Yabuuchi
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
被引量:2
标识
DOI:10.1097/rct.0000000000001525
摘要

Objective The purpose of this study is to evaluate the efficacy of deep learning reconstruction (DLR) on low-tube-voltage computed tomographic angiography (CTA) for transcatheter aortic valve implantation (TAVI). Methods We enrolled 30 patients who underwent TAVI-CT on a 320-row CT scanner. Electrocardiogram-gated coronary CTA (CCTA) was performed at 100 kV, followed by nongated aortoiliac CTA at 80 kV using a single bolus of contrast material. We used hybrid-iterative reconstruction (HIR), model-based IR (MBIR), and DLR to reconstruct these images. The contrast-to-noise ratios (CNRs) were calculated. Five-point scales were used for the overall image quality analysis. The diameter of the aortic annulus was measured in each reconstructed image, and we compared the interobserver and intraobserver agreements. Results In the CCTA, the CNR and image quality score for DLR were significantly higher than those for HIR and MBIR ( P < 0.01). In the aortoiliac CTA, the CNR for DLR was significantly higher than that for HIR ( P < 0.01) and significantly lower than that for MBIR ( P ≤ 0.02). The image quality score for DLR was significantly higher than that for HIR ( P < 0.01). No significant differences were observed between the image quality scores for DLR and MBIR. The measured aortic annulus diameter had high interobserver and intraobserver agreement regardless of the reconstruction method (all intraclass correlation coefficients, >0.89). Conclusions In low tube voltage TAVI-CT, DLR provides higher image quality than HIR, and DLR provides higher image quality than MBIR in CCTA and is visually comparable to MBIR in aortoiliac CTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澜生发布了新的文献求助10
刚刚
leekle完成签到,获得积分10
1秒前
shengChen发布了新的文献求助10
1秒前
自信鞯发布了新的文献求助10
2秒前
江北小赵完成签到,获得积分10
2秒前
2秒前
2秒前
clock完成签到 ,获得积分10
2秒前
虫二先生完成签到 ,获得积分10
2秒前
甜甜的难敌完成签到,获得积分10
3秒前
3秒前
4秒前
小潘同学完成签到,获得积分10
4秒前
4秒前
科研通AI5应助传统的海露采纳,获得10
5秒前
学术刘亦菲完成签到,获得积分10
5秒前
成就的烧鹅完成签到,获得积分20
5秒前
6秒前
dd发布了新的文献求助10
6秒前
luoshi应助leon采纳,获得30
7秒前
7秒前
wang完成签到,获得积分10
7秒前
可爱的函函应助hu采纳,获得10
7秒前
7秒前
我测你码关注了科研通微信公众号
8秒前
下课了吧发布了新的文献求助10
8秒前
jy发布了新的文献求助10
8秒前
绘梨衣完成签到,获得积分10
9秒前
数据线完成签到,获得积分10
9秒前
完美世界应助甜甜的难敌采纳,获得30
10秒前
满堂花醉三千客完成签到 ,获得积分10
10秒前
10秒前
10秒前
gao完成签到,获得积分10
11秒前
LiuRuizhe完成签到,获得积分10
11秒前
绘梨衣发布了新的文献求助10
11秒前
11秒前
12秒前
淡定紫菱发布了新的文献求助10
13秒前
李繁蕊发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794