The Feasibility of Deep Learning–Based Reconstruction for Low-Tube-Voltage CT Angiography for Transcatheter Aortic Valve Implantation

医学 放射科 主动脉瓣 血管造影 计算机断层血管造影 心脏病学
作者
T. Kojima,Yuzo Yamasaki,Yuko Matsuura,Ryoji Mikayama,Takashi Shirasaka,Masatoshi Kondo,Takeshi Kamitani,Toyoyuki Kato,Kousei Ishigami,Hidetake Yabuuchi
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:48 (1): 77-84 被引量:3
标识
DOI:10.1097/rct.0000000000001525
摘要

Objective The purpose of this study is to evaluate the efficacy of deep learning reconstruction (DLR) on low-tube-voltage computed tomographic angiography (CTA) for transcatheter aortic valve implantation (TAVI). Methods We enrolled 30 patients who underwent TAVI-CT on a 320-row CT scanner. Electrocardiogram-gated coronary CTA (CCTA) was performed at 100 kV, followed by nongated aortoiliac CTA at 80 kV using a single bolus of contrast material. We used hybrid-iterative reconstruction (HIR), model-based IR (MBIR), and DLR to reconstruct these images. The contrast-to-noise ratios (CNRs) were calculated. Five-point scales were used for the overall image quality analysis. The diameter of the aortic annulus was measured in each reconstructed image, and we compared the interobserver and intraobserver agreements. Results In the CCTA, the CNR and image quality score for DLR were significantly higher than those for HIR and MBIR ( P < 0.01). In the aortoiliac CTA, the CNR for DLR was significantly higher than that for HIR ( P < 0.01) and significantly lower than that for MBIR ( P ≤ 0.02). The image quality score for DLR was significantly higher than that for HIR ( P < 0.01). No significant differences were observed between the image quality scores for DLR and MBIR. The measured aortic annulus diameter had high interobserver and intraobserver agreement regardless of the reconstruction method (all intraclass correlation coefficients, >0.89). Conclusions In low tube voltage TAVI-CT, DLR provides higher image quality than HIR, and DLR provides higher image quality than MBIR in CCTA and is visually comparable to MBIR in aortoiliac CTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的千柳完成签到 ,获得积分10
2秒前
3秒前
优秀的尔风完成签到,获得积分10
5秒前
孙晓燕完成签到 ,获得积分10
6秒前
伴奏小胖完成签到 ,获得积分10
7秒前
JJ完成签到 ,获得积分10
9秒前
雪原白鹿完成签到,获得积分10
12秒前
GG完成签到 ,获得积分10
18秒前
经纲完成签到 ,获得积分0
18秒前
sdfdzhang完成签到 ,获得积分0
20秒前
头号玩家发布了新的文献求助10
22秒前
huangqian完成签到,获得积分10
23秒前
YamDaamCaa发布了新的文献求助80
23秒前
Krsky完成签到,获得积分10
24秒前
熠霖完成签到,获得积分10
24秒前
YG完成签到,获得积分10
26秒前
小飞侠完成签到 ,获得积分10
42秒前
春眠不觉小小酥完成签到,获得积分10
48秒前
Xu发布了新的文献求助10
51秒前
牧尔芙发布了新的文献求助10
52秒前
54秒前
北笙完成签到 ,获得积分10
58秒前
Lucas应助灵巧安蕾采纳,获得30
1分钟前
橘涂完成签到 ,获得积分10
1分钟前
酷炫大白发布了新的文献求助10
1分钟前
微雨若,,完成签到 ,获得积分10
1分钟前
善善完成签到 ,获得积分10
1分钟前
1分钟前
imica完成签到 ,获得积分10
1分钟前
Rena发布了新的文献求助10
1分钟前
1分钟前
Rena完成签到,获得积分20
1分钟前
陈__完成签到,获得积分10
1分钟前
1分钟前
颜色渐变完成签到 ,获得积分10
1分钟前
阳炎完成签到,获得积分10
1分钟前
lz完成签到 ,获得积分10
1分钟前
liuguohua126完成签到,获得积分10
1分钟前
咕噜完成签到 ,获得积分10
1分钟前
Liu完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511014
关于积分的说明 11155997
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255