The Feasibility of Deep Learning–Based Reconstruction for Low-Tube-Voltage CT Angiography for Transcatheter Aortic Valve Implantation

医学 放射科 主动脉瓣 血管造影 计算机断层血管造影 心脏病学
作者
T. Kojima,Yuzo Yamasaki,Yuko Matsuura,Ryoji Mikayama,Takashi Shirasaka,Masatoshi Kondo,Takeshi Kamitani,Toyoyuki Kato,Kousei Ishigami,Hidetake Yabuuchi
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (1): 77-84 被引量:3
标识
DOI:10.1097/rct.0000000000001525
摘要

Objective The purpose of this study is to evaluate the efficacy of deep learning reconstruction (DLR) on low-tube-voltage computed tomographic angiography (CTA) for transcatheter aortic valve implantation (TAVI). Methods We enrolled 30 patients who underwent TAVI-CT on a 320-row CT scanner. Electrocardiogram-gated coronary CTA (CCTA) was performed at 100 kV, followed by nongated aortoiliac CTA at 80 kV using a single bolus of contrast material. We used hybrid-iterative reconstruction (HIR), model-based IR (MBIR), and DLR to reconstruct these images. The contrast-to-noise ratios (CNRs) were calculated. Five-point scales were used for the overall image quality analysis. The diameter of the aortic annulus was measured in each reconstructed image, and we compared the interobserver and intraobserver agreements. Results In the CCTA, the CNR and image quality score for DLR were significantly higher than those for HIR and MBIR ( P < 0.01). In the aortoiliac CTA, the CNR for DLR was significantly higher than that for HIR ( P < 0.01) and significantly lower than that for MBIR ( P ≤ 0.02). The image quality score for DLR was significantly higher than that for HIR ( P < 0.01). No significant differences were observed between the image quality scores for DLR and MBIR. The measured aortic annulus diameter had high interobserver and intraobserver agreement regardless of the reconstruction method (all intraclass correlation coefficients, >0.89). Conclusions In low tube voltage TAVI-CT, DLR provides higher image quality than HIR, and DLR provides higher image quality than MBIR in CCTA and is visually comparable to MBIR in aortoiliac CTA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助花海采纳,获得10
1秒前
OLDBLOW完成签到 ,获得积分10
1秒前
淡然的奎完成签到,获得积分10
2秒前
2秒前
左丘冬寒完成签到,获得积分10
3秒前
gody完成签到,获得积分10
3秒前
溜溜蛋完成签到,获得积分10
4秒前
吃瓜米吃瓜米完成签到 ,获得积分10
4秒前
Crystal完成签到 ,获得积分10
5秒前
6秒前
JamesPei应助蚂蚁Y嘿采纳,获得10
6秒前
失眠的向日葵完成签到 ,获得积分10
8秒前
坦率的之卉完成签到,获得积分20
10秒前
科研通AI6.1应助欣宝采纳,获得10
10秒前
11秒前
11秒前
livra1058完成签到,获得积分10
11秒前
砚木完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
73Jennie123完成签到,获得积分10
13秒前
动力小滋完成签到,获得积分10
13秒前
无名应助离子键采纳,获得20
15秒前
15秒前
15秒前
悲伤的小卷毛完成签到,获得积分10
16秒前
18秒前
rj完成签到,获得积分10
18秒前
18秒前
老实的乐儿完成签到 ,获得积分10
18秒前
19秒前
Owen应助Mayeleven采纳,获得30
23秒前
23秒前
蚂蚁Y嘿发布了新的文献求助10
24秒前
冰蓝色的忧伤完成签到,获得积分10
24秒前
allenice完成签到,获得积分0
25秒前
25秒前
宇宙星河完成签到,获得积分10
28秒前
28秒前
gelinhao完成签到,获得积分0
28秒前
Ava应助长理物电强采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224