Lung Cancer Risk Prediction Models for Asian Ever-Smokers

医学 肺癌 置信区间 入射(几何) 肿瘤科 人口 内科学 前瞻性队列研究 接收机工作特性 结直肠癌 癌症 人口学 环境卫生 物理 光学 社会学
作者
Jae Jeong Yang,Wanqing Wen,Hana Zahed,Wei Zheng,Qing Lan,Sarah Krull Abe,Md. Shafiur Rahman,Md. Rashedul Islam,Eiko Saito,Prakash C. Gupta,Akiko Tamakoshi,Woon‐Puay Koh,Yu‐Tang Gao,Ritsu Sakata,Ichiro Tsuji,Reza Malekzadeh,Yumi Sugawara,Jeongseon Kim,Hidemi Ito,Chisato Nagata,San–Lin You,Sue K. Park,Jian‐Min Yuan,Myung‐Hee Shin,Sun-Seog Kweon,Sang‐Wook Yi,Mangesh S. Pednekar,Takashi Kimura,Hui Cai,Yukai Lu,Arash Etemadi,Seiki Kanemura,Keiko Wada,Chien‐Jen Chen,Aesun Shin,Renwei Wang,Yoon‐Ok Ahn,Min‐Ho Shin,Heechoul Ohrr,Mahdi Sheikh,Batel Blechter,Habibul Ahsan,Paolo Boffetta,Kee Seng Chia,Keitaro Matsuo,You‐Lin Qiao,Nathaniel Rothman,Manami Inoue,Daehee Kang,Hilary A. Robbins,Xiao‐Ou Shu
出处
期刊:Journal of Thoracic Oncology [Elsevier]
卷期号:19 (3): 451-464 被引量:4
标识
DOI:10.1016/j.jtho.2023.11.002
摘要

Introduction Although lung cancer prediction models are widely used to support risk-based screening, their performance outside Western populations remains uncertain. This study aims to evaluate the performance of 11 existing risk prediction models in multiple Asian populations and to refit prediction models for Asians. Methods In a pooled analysis of 186,458 Asian ever-smokers from 19 prospective cohorts, we assessed calibration (expected-to-observed ratio) and discrimination (area under the receiver operating characteristic curve [AUC]) for each model. In addition, we developed the "Shanghai models" to better refine risk models for Asians on the basis of two well-characterized population-based prospective cohorts and externally validated them in other Asian cohorts. Results Among the 11 models, the Lung Cancer Death Risk Assessment Tool yielded the highest AUC (AUC [95% confidence interval (CI)] = 0.71 [0.67–0.74] for lung cancer death and 0.69 [0.67–0.72] for lung cancer incidence) and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Model had good calibration overall (expected-to-observed ratio [95% CI] = 1.06 [0.90–1.25]). Nevertheless, these models substantially underestimated lung cancer risk among Asians who reported less than 10 smoking pack-years or stopped smoking more than or equal to 20 years ago. The Shanghai models were found to have marginal improvement overall in discrimination (AUC [95% CI] = 0.72 [0.69–0.74] for lung cancer death and 0.70 [0.67–0.72] for lung cancer incidence) but consistently outperformed the selected Western models among low-intensity smokers and long-term quitters. Conclusions The Shanghai models had comparable performance overall to the best existing models, but they improved much in predicting the lung cancer risk of low-intensity smokers and long-term quitters in Asia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助沉阁采纳,获得10
刚刚
2秒前
3秒前
秋子骞完成签到 ,获得积分10
3秒前
A0228号卫星完成签到 ,获得积分10
3秒前
塔菲尔完成签到 ,获得积分10
5秒前
longtengfei完成签到,获得积分10
5秒前
DZQ2024发布了新的文献求助10
5秒前
西早07完成签到,获得积分10
6秒前
6秒前
qianqian完成签到,获得积分10
6秒前
songjin完成签到 ,获得积分10
8秒前
研友_gnv61n完成签到,获得积分10
9秒前
GSQ完成签到,获得积分10
9秒前
xiao完成签到 ,获得积分10
9秒前
10秒前
手动阀发布了新的文献求助10
10秒前
jin完成签到,获得积分10
11秒前
隐形的果汁完成签到,获得积分20
13秒前
vtfangfangfang完成签到,获得积分10
13秒前
潜放完成签到,获得积分10
14秒前
clay_park完成签到,获得积分10
14秒前
15秒前
英姑应助冬虫夏草采纳,获得10
15秒前
这丁发布了新的文献求助10
16秒前
17秒前
半圆亻完成签到 ,获得积分10
17秒前
hyperthermal1完成签到,获得积分10
18秒前
19秒前
21秒前
22秒前
23秒前
鹏程完成签到,获得积分10
25秒前
王小胖发布了新的文献求助10
25秒前
蓝枫发布了新的文献求助10
25秒前
激动的乐安完成签到 ,获得积分10
25秒前
冬虫夏草发布了新的文献求助10
28秒前
共享精神应助蓝歆采纳,获得10
28秒前
EricFan发布了新的文献求助10
28秒前
枫倾杨完成签到,获得积分20
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011