CONGREGATE: Contrastive Graph Clustering in Curvature Spaces

聚类分析 计算机科学 图形 聚类系数 理论计算机科学 人工智能 数学
作者
Li Sun,Feiyang Wang,Junda Ye,Hao Peng,Philip S. Yu
标识
DOI:10.24963/ijcai.2023/255
摘要

Graph clustering is a longstanding research topic, and has achieved remarkable success with the deep learning methods in recent years. Nevertheless, we observe that several important issues largely remain open. On the one hand, graph clustering from the geometric perspective is appealing but has rarely been touched before, as it lacks a promising space for geometric clustering. On the other hand, contrastive learning boosts the deep graph clustering but usually struggles in either graph augmentation or hard sample mining. To bridge this gap, we rethink the problem of graph clustering from geometric perspective and, to the best of our knowledge, make the first attempt to introduce a heterogeneous curvature space to graph clustering problem. Correspondingly, we present a novel end-to-end contrastive graph clustering model named CONGREGATE, addressing geometric graph clustering with Ricci curvatures. To support geometric clustering, we construct a theoretically grounded Heterogeneous Curvature Space where deep representations are generated via the product of the proposed fully Riemannian graph convolutional nets. Thereafter, we train the graph clusters by an augmentation-free reweighted contrastive approach where we pay more attention to both hard negatives and hard positives in our curvature space. Empirical results on real-world graphs show that our model outperforms the state-of-the-art competitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
inter发布了新的文献求助10
刚刚
6秒前
6秒前
星辰大海应助Wqian采纳,获得10
9秒前
9秒前
13秒前
21秒前
22秒前
科目三应助朴素的松采纳,获得10
23秒前
Jodie发布了新的文献求助10
26秒前
26秒前
Heinrich完成签到,获得积分10
27秒前
Lucas应助inter采纳,获得10
31秒前
无极微光应助科研通管家采纳,获得20
34秒前
Orange应助科研通管家采纳,获得10
34秒前
Verity应助科研通管家采纳,获得10
34秒前
34秒前
丘比特应助科研通管家采纳,获得10
34秒前
34秒前
苏新天完成签到 ,获得积分10
34秒前
搜集达人应助科研通管家采纳,获得10
34秒前
Liangang应助科研通管家采纳,获得10
34秒前
34秒前
搜集达人应助科研通管家采纳,获得10
34秒前
huanger应助科研通管家采纳,获得10
34秒前
桐桐应助科研通管家采纳,获得10
35秒前
斯文败类应助科研通管家采纳,获得10
35秒前
小新应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
斯文败类应助科研通管家采纳,获得10
35秒前
一叶知秋应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
37秒前
跳跃的翼完成签到,获得积分10
40秒前
健忘可愁完成签到,获得积分10
41秒前
跳跃的翼发布了新的文献求助10
42秒前
43秒前
无花果应助加百莉采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550