计算机科学
感知器
任务(项目管理)
人工神经网络
机器学习
人工智能
图层(电子)
心理干预
数学教育
数据科学
知识管理
心理学
工程类
精神科
有机化学
化学
系统工程
作者
Berat Ujkani,Daniela Minkovska,Milena Lazarova
标识
DOI:10.1109/comsci59259.2023.10315938
摘要
Predicting student success is an important task in educational institutions, as it allows for targeted interventions and support systems to enhance educational outcomes. This paper explores the use of SHAP (SHapley Additive exPlanations) model-agnostic method in understanding and interpreting student success prediction. The predictive model was built using Multi-Layer Perceptron neural network algorithm on a large public dataset. By shedding light on the underlying factors driving student success, this research contributes to the advancement of data-driven decision-making in education.
科研通智能强力驱动
Strongly Powered by AbleSci AI