Deep learning methods in metagenomics: a review

基因组 微生物群 可解释性 计算机科学 人工智能 数据科学 深度学习 计算生物学 机器学习 人类微生物组计划 肠道微生物群 人体微生物群 生物信息学 生物 遗传学 基因
作者
Gaspar Roy,Edi Prifti,Eugeni Belda,Jean‐Daniel Zucker
标识
DOI:10.1101/2023.08.06.552187
摘要

Abstract The ever-decreasing cost of sequencing and the growing potential applications of metagenomics have led to an unprecedented surge in data generation. One of the most prevalent applications of metagenomics is the study of microbial environments, such as the human gut. The gut microbiome plays a crucial role in human health, providing vital information for patient diagnosis and prognosis. However, analyzing metagenomic data remains challenging due to several factors, including reference catalogs, sparsity, and compositionality. Deep learning (DL) enables novel and promising approaches that complement state-of-the-art microbiome pipelines. DL-based methods can address almost all aspects of microbiome analysis, including novel pathogen detection, sequence classification, patient stratification, and disease prediction. Beyond generating predictive models, a key aspect of these methods is also their interpretability. This article reviews deep learning approaches in metagenomics, including convolutional networks (CNNs), autoencoders, and attention-based models. These methods aggregate contextualized data and pave the way for improved patient care and a better understanding of the microbiome’s key role in our health. Author summary In our study, we look at the vast world of research in metagenomics, the study of genetic material from environmental samples, spurred by the increasing affordability of sequencing technologies. Our particular focus is the human gut microbiome, an environment teeming with microscopic life forms that plays a central role in our health and well-being. However, navigating through the vast amounts of data generated is not an easy task. Traditional methods hit roadblocks due to the unique nature of metagenomic data. That’s where deep learning (DL), a today well known branch of artificial intelligence, comes in. DL-based techniques complement existing methods and open up new avenues in microbiome research. They’re capable of tackling a wide range of tasks, from identifying unknown pathogens to predicting disease based on a patient’s unique microbiome. In our article, we provide a very comprehensive review of different DL strategies for metagenomics, including convolutional networks, autoencoders, and attention-based models. We are convinced that these techniques significantly enhance the field of metagenomic analysis in its entirety, paving the way for more accurate data analysis and, ultimately, better patient care. The PRISMA augmented diagram of our review is illustrated in Fig 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助苗轩采纳,获得10
刚刚
yxw完成签到,获得积分10
刚刚
1秒前
这啥呀完成签到,获得积分10
2秒前
3秒前
生动驳完成签到,获得积分10
5秒前
慕青应助gjm采纳,获得10
5秒前
斯文败类应助夏夜晚风采纳,获得10
5秒前
5秒前
Tomato发布了新的文献求助10
5秒前
青海盐湖所李阳阳完成签到 ,获得积分10
6秒前
6秒前
niuniu完成签到,获得积分10
7秒前
7秒前
完美世界应助如意小土豆采纳,获得20
7秒前
8秒前
是个小朋友啊完成签到,获得积分10
8秒前
呆萌雪晴发布了新的文献求助10
8秒前
漠枯完成签到,获得积分10
9秒前
11秒前
niuniu发布了新的文献求助10
11秒前
bkagyin应助Jerrycrazy采纳,获得10
13秒前
13秒前
舍曲林完成签到,获得积分10
13秒前
qiqi完成签到,获得积分10
14秒前
14秒前
14秒前
朴实如波发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
16秒前
17秒前
sincerely完成签到,获得积分10
18秒前
18秒前
甜甜妙梦发布了新的文献求助10
18秒前
gjm完成签到,获得积分20
20秒前
20秒前
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304627
求助须知:如何正确求助?哪些是违规求助? 2938626
关于积分的说明 8489303
捐赠科研通 2613106
什么是DOI,文献DOI怎么找? 1427111
科研通“疑难数据库(出版商)”最低求助积分说明 662895
邀请新用户注册赠送积分活动 647487