Convolutional Neural Network-Based Entity-Specific Common Feature Aggregation for Knowledge Graph Embedding Learning

计算机科学 卷积神经网络 特征学习 嵌入 人工智能 图形 特征(语言学) 深度学习 机器学习 文字嵌入 理论计算机科学 语言学 哲学
作者
Kairong Hu,Xiaozhi Zhu,Hai Liu,Yingying Qu,Fu Lee Wang,Tianyong Hao
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 3593-3602 被引量:2
标识
DOI:10.1109/tce.2023.3302297
摘要

Deep learning models present impressive capability for automatic feature extraction, where common features-based aggregation have demonstrated valuable potential in improving the model performance on text classification, sentiment analysis, etc. However, leveraging entity-specific common feature aggregation for enhancing knowledge graph representation learning has not been fully explored yet, though diverse strategies in knowledge graph embedding models have been developed in recent years. This paper proposes an innovative Convolutional Neural Network-based Entity-specific Common Feature Aggregation strategy named CNN-ECFA. Besides, a new universal framework based on the CNN-ECFA strategy is introduced for knowledge graph embedding learning. Experiments are conducted on publicly-available standard datasets for a link prediction task including WN18RR, YAGO3-10 and NELL-995. Results show that the CNN-ECFA strategy outperforms the state-of-the-art feature projection strategies with average improvements of 0.6% and 0.7% of MRR and Hits@1 on all the datasets, demonstrating our CNN-ECFA strategy is more effective for knowledge graph embedding learning. In addition, our universal framework significantly outperforms a generalized relation learning framework on WN18RR and NELL-995 with average improvements of 1.7% and 1.9% on MRR and Hits@1. The source code is publicly available at.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡淡阁完成签到 ,获得积分10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
HITvagary完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
打打应助科研通管家采纳,获得10
1秒前
慕青应助邓邓采纳,获得10
3秒前
xgx984完成签到,获得积分10
3秒前
you翅膀的鱼完成签到,获得积分10
4秒前
火星仙人掌完成签到 ,获得积分10
9秒前
BingoTang完成签到,获得积分10
10秒前
12秒前
jessie完成签到,获得积分10
14秒前
橙子是不是完成签到,获得积分10
14秒前
外向的雁玉完成签到,获得积分10
16秒前
子铭完成签到,获得积分10
18秒前
邓邓发布了新的文献求助10
18秒前
19秒前
大模型应助研友_5Zl9D8采纳,获得10
19秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
20秒前
吕绪特发布了新的文献求助10
22秒前
山乞凡完成签到 ,获得积分10
28秒前
邓邓完成签到,获得积分10
28秒前
勤恳风华完成签到,获得积分10
29秒前
一三二五七完成签到 ,获得积分0
30秒前
speed完成签到 ,获得积分10
32秒前
PDD完成签到,获得积分10
33秒前
佳言2009完成签到,获得积分10
34秒前
Dream完成签到,获得积分0
34秒前
CYT完成签到 ,获得积分10
37秒前
41秒前
43秒前
我爱磕盐完成签到,获得积分10
44秒前
h41692011完成签到 ,获得积分10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511071
关于积分的说明 11156136
捐赠科研通 3245633
什么是DOI,文献DOI怎么找? 1793097
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268