Gradient-based multi-label feature selection considering three-way variable interaction

特征选择 特征(语言学) 计算机科学 人工智能 变量(数学) 模式识别(心理学) 正规化(语言学) 梯度下降 数据挖掘 数学 机器学习 人工神经网络 数学分析 哲学 语言学
作者
Yizhang Zou,Xuegang Hu,Peipei Li
出处
期刊:Pattern Recognition [Elsevier]
卷期号:145: 109900-109900 被引量:16
标识
DOI:10.1016/j.patcog.2023.109900
摘要

Nowadays, Multi-Label Feature Selection (MLFS) attracts more and more attention to tackle the high-dimensional problem in multi-label data. A key characteristic of existing gradient-based MLFS methods is that they typically consider two-way variable correlations between features and labels, including feature-feature and label-label correlations. However, two-way correlations are not sufficient to steer feature selection since such correlations vary given different additional variables in practical scenarios, which leads to the selected features with relatively-poor classification performance. Motivated by this, we capture three-way variable interactions including feature-feature-label and feature-label-label interactions to further characterize the fluctuating correlations in the context of another variable, and propose a new gradient-based MLFS approach incorporating the above three-way variable interactions into a global optimization objective. Specifically, based on information theory, we develop second-order regularization penalty terms to regard three-way interactions while jointly combining with the main loss term in regard to feature relevance. Then the objective function can be efficiently optimized via a block-coordinate gradient descent schema. Meanwhile, we provide a theoretical analysis demonstrating the effectiveness of the regularization terms in exploiting three-way interaction. In addition, experiments conducted on a series of benchmark data sets also verify the validity of the proposed method on multiple evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Hello应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
xiaolei001应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
呵呵应助科研通管家采纳,获得10
刚刚
文静新烟应助科研通管家采纳,获得50
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
华仔应助科研通管家采纳,获得10
刚刚
xiaolei001应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
hoijuon应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
那时花开应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
仇悦完成签到,获得积分10
1秒前
小蘑菇应助科研通管家采纳,获得30
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
搞怪的哈密瓜完成签到,获得积分10
1秒前
咄咄完成签到 ,获得积分10
3秒前
4秒前
独特乘风完成签到,获得积分10
4秒前
Gloria完成签到,获得积分10
5秒前
5秒前
复杂千亦完成签到,获得积分10
6秒前
来弄完成签到,获得积分10
6秒前
小付完成签到,获得积分10
7秒前
缓冲中完成签到 ,获得积分10
7秒前
平淡纸飞机完成签到 ,获得积分10
8秒前
123完成签到,获得积分10
8秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378995
求助须知:如何正确求助?哪些是违规求助? 4503456
关于积分的说明 14015772
捐赠科研通 4412144
什么是DOI,文献DOI怎么找? 2423708
邀请新用户注册赠送积分活动 1416600
关于科研通互助平台的介绍 1394111