Gradient-based multi-label feature selection considering three-way variable interaction

特征选择 特征(语言学) 计算机科学 人工智能 变量(数学) 模式识别(心理学) 正规化(语言学) 梯度下降 数据挖掘 数学 机器学习 人工神经网络 语言学 数学分析 哲学
作者
Yizhang Zou,Xuegang Hu,Peipei Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109900-109900 被引量:16
标识
DOI:10.1016/j.patcog.2023.109900
摘要

Nowadays, Multi-Label Feature Selection (MLFS) attracts more and more attention to tackle the high-dimensional problem in multi-label data. A key characteristic of existing gradient-based MLFS methods is that they typically consider two-way variable correlations between features and labels, including feature-feature and label-label correlations. However, two-way correlations are not sufficient to steer feature selection since such correlations vary given different additional variables in practical scenarios, which leads to the selected features with relatively-poor classification performance. Motivated by this, we capture three-way variable interactions including feature-feature-label and feature-label-label interactions to further characterize the fluctuating correlations in the context of another variable, and propose a new gradient-based MLFS approach incorporating the above three-way variable interactions into a global optimization objective. Specifically, based on information theory, we develop second-order regularization penalty terms to regard three-way interactions while jointly combining with the main loss term in regard to feature relevance. Then the objective function can be efficiently optimized via a block-coordinate gradient descent schema. Meanwhile, we provide a theoretical analysis demonstrating the effectiveness of the regularization terms in exploiting three-way interaction. In addition, experiments conducted on a series of benchmark data sets also verify the validity of the proposed method on multiple evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moMo发布了新的文献求助30
1秒前
老黑完成签到,获得积分10
2秒前
骆丹妗发布了新的文献求助10
2秒前
wyr完成签到,获得积分10
2秒前
2秒前
3秒前
Fiona678完成签到,获得积分10
4秒前
上官若男应助Zirong采纳,获得10
4秒前
水濑心源发布了新的文献求助10
5秒前
6秒前
6秒前
传奇3应助叶诗柳采纳,获得10
8秒前
韦老虎发布了新的文献求助30
8秒前
9秒前
9秒前
666应助DWRH采纳,获得10
9秒前
大模型应助DWRH采纳,获得10
9秒前
10秒前
Joao79完成签到,获得积分10
10秒前
开心向真完成签到,获得积分10
11秒前
yazhang完成签到 ,获得积分10
11秒前
顺顺安完成签到,获得积分10
12秒前
Erhei发布了新的文献求助10
12秒前
CHEE完成签到 ,获得积分10
13秒前
阳yang完成签到,获得积分10
13秒前
如许发布了新的文献求助10
13秒前
今后应助陈y采纳,获得10
13秒前
14秒前
七安完成签到,获得积分10
14秒前
16秒前
七安发布了新的文献求助10
17秒前
丰那个丰发布了新的文献求助10
18秒前
18秒前
20秒前
今夕是何年完成签到,获得积分10
21秒前
22秒前
SCIAI完成签到,获得积分10
22秒前
韦老虎发布了新的文献求助90
24秒前
24秒前
SCIAI发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388