Attention-based automatic editing of virtual lectures for reduced production labor and effective learning experience

计算机科学 视频编辑 后期制作 多媒体 管道(软件) 认知负荷 点(几何) 眼动 过程(计算) 质量(理念) 视频制作 剪辑 人机交互 人工智能 认知 心理学 哲学 几何学 数学 认识论 神经科学 程序设计语言 操作系统
作者
Eugene Hwang,Jeongmi Lee
出处
期刊:International journal of human-computer studies [Elsevier BV]
卷期号:: 103161-103161
标识
DOI:10.1016/j.ijhcs.2023.103161
摘要

Recently there has been a surge in demand for online video-based learning, and the importance of high-quality educational videos is ever-growing. However, a uniform format of videos that neglects individual differences and the labor-intensive process of editing are major setbacks in producing effective educational videos. This study aims to resolve the issues by proposing an automatic lecture video editing pipeline based on each individual’s attention pattern. In this pipeline, the eye-tracking data are obtained while each individual watches virtual lectures, which later go through multiple filters to define the viewer’s locus of attention and to select the appropriate shot at each time point to create personalized videos. To assess the effectiveness of the proposed method, video characteristics, subjective evaluations of the learning experience, and objective eye-movement features were compared between differently edited videos (attention-based, randomly edited, professionally edited). The results showed that our method dramatically reduced the editing time, with similar video characteristics to those of professionally edited versions. Attention-based versions were also evaluated to be significantly better than randomly edited ones, and as effective as professionally edited ones. Eye-tracking results indicated that attention-based videos have the potential to decrease the cognitive load of learners. These results suggest that attention-based automatic editing can be a viable or even a better alternative to the human expert-dependent approach, and individually-tailored videos have the potential to heighten the learning experience and effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助大大怪将军采纳,获得10
2秒前
磊磊猪完成签到,获得积分10
3秒前
白_ww完成签到,获得积分10
4秒前
5秒前
5秒前
水穷云起发布了新的文献求助10
6秒前
弱虫发布了新的文献求助10
6秒前
smy完成签到,获得积分10
7秒前
7秒前
甜甜圈完成签到,获得积分10
9秒前
10秒前
做梦的鱼发布了新的文献求助30
10秒前
甜甜圈发布了新的文献求助10
11秒前
11秒前
12秒前
香蕉觅云应助ANQ采纳,获得30
12秒前
yaowei完成签到,获得积分10
12秒前
111完成签到,获得积分10
14秒前
15秒前
于水清完成签到,获得积分10
15秒前
脑洞疼应助su采纳,获得10
16秒前
Yipeng98完成签到 ,获得积分10
16秒前
阳光的豁发布了新的文献求助10
17秒前
17秒前
FashionBoy应助孙文昭采纳,获得10
17秒前
陶1122完成签到,获得积分10
18秒前
111发布了新的文献求助10
19秒前
若ruofeng应助842782026采纳,获得10
19秒前
20秒前
20秒前
有足量NaCl发布了新的文献求助10
21秒前
小蘑菇应助854fycchjh采纳,获得10
21秒前
筱曼完成签到,获得积分10
21秒前
22秒前
Cactus应助TTD采纳,获得10
22秒前
22秒前
科研通AI5应助小懒猪采纳,获得10
23秒前
悦耳黑猫发布了新的文献求助10
24秒前
任大师兄应助Super采纳,获得50
24秒前
顾矜应助冷静战斗机采纳,获得10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814