亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantification of Downhole Production Profiles Using Production, Acoustic, and Temperature Logging: A Case Study from a High-GOR Producer to Design an Optimized Production Strategy

登录中 石油工程 测井 生产(经济) 提高采收率 环境科学 采样(信号处理) 井筒 工作流程 工程类 计算机科学 探测器 生态学 电气工程 数据库 生物 经济 宏观经济学
作者
Mirna Slim,C. Omurlu,Maxim Volkov,Geoffrey H. Donovan,Virginie Schoepf,Alain Gysen
标识
DOI:10.2118/214787-ms
摘要

Abstract In mature fields, improving oil recovery by waterflood in depleted sands while remaining below the desired gas/oil ratio (GOR) limits is always a challenge. A high GOR, inconsistent with reservoir modeling predictions, triggered a halt in production in one of the new updip producers in the field. Re-visiting the understanding of the reservoir fluid behavior and dynamic simulation model(s), and, most importantly, confirming the formation of a secondary gas cap triggered the planning and execution of a production logging program, a sampling program, and a series of well tests. This paper presents a case study that shows how production, acoustic, and temperature dynamic modeling complemented each other to meet the logging program objectives: 1) confirm the source of gas (a gas cap versus differentially-depleted sand units); 2) obtain downhole samples with high cumulative oil content for geochemical and PVT (Pressure-Volume-Temperature) analyses; and, 3) design an optimized production/injection strategy that allows the operator to resume production under new conditions that control the GOR in the well. Production logs were obtained using a third generation (Gen3) Production Logging Tool (PLT) run with an innovative combination of electrical, optical, and capacitance micro-sensors as well as doppler transducers flowing the well at two different production rates. A new advanced approach to processing optical data was used as part of an otherwise well-established analysis workflow. The log interpretation reveals a segregated well flow profile with negligible water production at depth, an intermediate oil zone with minimal gas holdup, and an upper gas-dominant zone. The High-Definition Spectral Acoustic (Noise) and High-Precision Temperature (SNL-HD and HPT, respectively) logs were obtained to model the allocation (producing versus non-producing sands) and quantification (oil versus gas volumes) of the reservoir flow, respectively. While the well production profile suggests a potential secondary gas cap or a highly depleted gas-producing top sand layer(s), the high frequency acoustic measurements indicate radial reservoir flow from five main producing sand units, the deepest of which is a few feet above the bottom-most perforations. Temperature dynamic modeling indicates that each producing sand unit produces both oil and gas. The depths of the producing sand units, the produced hydrocarbon composition, and the well production profile indicate a depth mismatch between where the gas is produced in the reservoir and where it is seen in the well. A theory to explain this depth mismatch is annular gas flow in the lower completed well section, which would disprove the formation and existence of a gas cap. Well tests and GOR calculations in the various producing sand units indicate an improved GOR and an increasing reservoir pressure (Pres), both of which were expected due to injection at high Voidage Replacement Ratio (VRR ≥ 1) and a pause in production in the well. Results from the analyzed downhole samples and extended well tests provided inputs to update reservoir models, PVT properties, and allow better predictions of Pres and GOR changes with production and injection. Additionally, PVT results, using the downhole fluid samples, helped engineer the original reservoir fluid composition (at virgin pressures) and narrow down the range of initial reservoir saturation pressure (Psat) in the updip location. Geochemical results also confirmed the connectivity of the oil column between updip and downdip locations. All observations, data, and modeling helped shape an optimized production strategy to be implemented in the well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑钢笔完成签到 ,获得积分10
4秒前
郭志成完成签到 ,获得积分10
10秒前
库茨库茨完成签到,获得积分10
12秒前
vetzlk完成签到 ,获得积分10
14秒前
李昕123完成签到 ,获得积分10
15秒前
唠叨的逍遥完成签到,获得积分10
16秒前
22秒前
666发布了新的文献求助10
27秒前
大模型应助yuanyuan采纳,获得10
29秒前
bkagyin应助666采纳,获得10
33秒前
ding应助hhh采纳,获得10
41秒前
43秒前
45秒前
Hello应助健忘的板凳采纳,获得10
48秒前
xuanxuan发布了新的文献求助10
48秒前
50秒前
pyh01完成签到 ,获得积分10
1分钟前
万能图书馆应助xuanxuan采纳,获得10
1分钟前
健忘的板凳完成签到,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
我必做出来完成签到,获得积分10
1分钟前
科研通AI6应助烂漫向卉采纳,获得30
1分钟前
小蘑菇应助alex采纳,获得10
1分钟前
1分钟前
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
Yii发布了新的文献求助10
1分钟前
miki完成签到 ,获得积分10
1分钟前
1分钟前
热情归尘完成签到,获得积分20
1分钟前
luchener完成签到,获得积分20
1分钟前
MRD完成签到,获得积分10
1分钟前
香蕉觅云应助yuanyuan采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898