Quantification of Downhole Production Profiles Using Production, Acoustic, and Temperature Logging: A Case Study from a High-GOR Producer to Design an Optimized Production Strategy

登录中 石油工程 测井 生产(经济) 提高采收率 环境科学 采样(信号处理) 井筒 工作流程 工程类 计算机科学 探测器 生态学 电气工程 数据库 生物 经济 宏观经济学
作者
Mirna Slim,C. Omurlu,Maxim Volkov,Geoffrey H. Donovan,Virginie Schoepf,Alain Gysen
标识
DOI:10.2118/214787-ms
摘要

Abstract In mature fields, improving oil recovery by waterflood in depleted sands while remaining below the desired gas/oil ratio (GOR) limits is always a challenge. A high GOR, inconsistent with reservoir modeling predictions, triggered a halt in production in one of the new updip producers in the field. Re-visiting the understanding of the reservoir fluid behavior and dynamic simulation model(s), and, most importantly, confirming the formation of a secondary gas cap triggered the planning and execution of a production logging program, a sampling program, and a series of well tests. This paper presents a case study that shows how production, acoustic, and temperature dynamic modeling complemented each other to meet the logging program objectives: 1) confirm the source of gas (a gas cap versus differentially-depleted sand units); 2) obtain downhole samples with high cumulative oil content for geochemical and PVT (Pressure-Volume-Temperature) analyses; and, 3) design an optimized production/injection strategy that allows the operator to resume production under new conditions that control the GOR in the well. Production logs were obtained using a third generation (Gen3) Production Logging Tool (PLT) run with an innovative combination of electrical, optical, and capacitance micro-sensors as well as doppler transducers flowing the well at two different production rates. A new advanced approach to processing optical data was used as part of an otherwise well-established analysis workflow. The log interpretation reveals a segregated well flow profile with negligible water production at depth, an intermediate oil zone with minimal gas holdup, and an upper gas-dominant zone. The High-Definition Spectral Acoustic (Noise) and High-Precision Temperature (SNL-HD and HPT, respectively) logs were obtained to model the allocation (producing versus non-producing sands) and quantification (oil versus gas volumes) of the reservoir flow, respectively. While the well production profile suggests a potential secondary gas cap or a highly depleted gas-producing top sand layer(s), the high frequency acoustic measurements indicate radial reservoir flow from five main producing sand units, the deepest of which is a few feet above the bottom-most perforations. Temperature dynamic modeling indicates that each producing sand unit produces both oil and gas. The depths of the producing sand units, the produced hydrocarbon composition, and the well production profile indicate a depth mismatch between where the gas is produced in the reservoir and where it is seen in the well. A theory to explain this depth mismatch is annular gas flow in the lower completed well section, which would disprove the formation and existence of a gas cap. Well tests and GOR calculations in the various producing sand units indicate an improved GOR and an increasing reservoir pressure (Pres), both of which were expected due to injection at high Voidage Replacement Ratio (VRR ≥ 1) and a pause in production in the well. Results from the analyzed downhole samples and extended well tests provided inputs to update reservoir models, PVT properties, and allow better predictions of Pres and GOR changes with production and injection. Additionally, PVT results, using the downhole fluid samples, helped engineer the original reservoir fluid composition (at virgin pressures) and narrow down the range of initial reservoir saturation pressure (Psat) in the updip location. Geochemical results also confirmed the connectivity of the oil column between updip and downdip locations. All observations, data, and modeling helped shape an optimized production strategy to be implemented in the well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情芝麻完成签到,获得积分10
刚刚
刚刚
天人合一完成签到,获得积分0
1秒前
1秒前
所所应助MailkMonk采纳,获得10
1秒前
穆茹妖发布了新的文献求助10
2秒前
2秒前
3秒前
dddd完成签到,获得积分10
4秒前
zhui发布了新的文献求助10
4秒前
八十发布了新的文献求助10
5秒前
鹿芩完成签到,获得积分10
6秒前
luxxxiu完成签到,获得积分10
8秒前
顺顺关注了科研通微信公众号
8秒前
眼睛大老姆完成签到,获得积分10
8秒前
18275412695完成签到,获得积分10
8秒前
9秒前
科目三应助xjtu采纳,获得10
9秒前
10秒前
10秒前
在水一方应助热情芝麻采纳,获得10
10秒前
害羞的玉米完成签到,获得积分10
10秒前
12秒前
12秒前
李来仪发布了新的文献求助10
13秒前
英姑应助yangyong采纳,获得10
13秒前
13秒前
NexusExplorer应助通通通采纳,获得10
13秒前
liying完成签到,获得积分10
14秒前
14秒前
15秒前
王石雨晨完成签到 ,获得积分10
15秒前
15秒前
18275412695发布了新的文献求助10
15秒前
研0完成签到,获得积分10
16秒前
丁昆发布了新的文献求助10
17秒前
锦墨人生发布了新的文献求助30
18秒前
科研通AI5应助猪猪hero采纳,获得10
18秒前
NexusExplorer应助无情的白桃采纳,获得10
19秒前
sommer12345完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794