An integrated analysis of the fecal metabolome and metagenome reveals the distinct effects of differentially charged nanoplastics on the gut microbiota-associated metabolites in mice

代谢组 粪便 肠道菌群 微生物群 代谢物 基因组 代谢组学 生物 微生物学 失调 化学 免疫学 生物化学 生物信息学 基因
作者
Miaomiao Teng,Xiaoli Zhao,Lingfeng Zhou,Hong Yan,Lihui Zhao,Jiaqi Sun,Yunxia Li,Wentao Zhu,Fengchang Wu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:906: 167287-167287 被引量:3
标识
DOI:10.1016/j.scitotenv.2023.167287
摘要

Whether nanoplastics with differential charges cause intestinal impairment via distinct mechanisms remains unclear. We investigated the relationship between fecal metabolites and the gut microbiome, and potential biomarkers thereof, in mice following exposure to differentially charged polystyrene nanoplastics (PS-NPs). Metagenomic analysis revealed that exposure to differentially charged PS-NPs resulted in alterations in the abundances of Bilophila_wadsworthia, Helicobacter apodemus, and Helicobacter typhlonius. A total of 237 fecal metabolites were significantly altered in mice that exhibited intestinal impairment, and these included 10 gut microbiota-related fecal metabolites that accurately discriminated impaired intestinal samples from the control. Additionally, the specific gut microbiome-related fecal metabolite-based model approach for the prediction of intestinal impairment in mice had an area under the curve (AUC) of 1.0 in the PS (without charge) group, an AUC of 0.94 in the PS-NH2 (positive charge) group, and an AUC of 0.86 in the PS-COOH (negative charge) group. Thus, the model showed promising evaluable accuracy for the prediction of intestinal impairment induced by nanoplastics in a charge-specific manner. Our study demonstrates that the fecal metabolome of mice with intestinal impairment following exposure to differentially charged nanoplastics is associated with changes in the gut microbiome. The identified biomarkers have potential application for the detection of intestinal impairment after exposure to negative, positive, or noncharged nanomaterials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助七点半采纳,获得10
刚刚
LYP发布了新的文献求助10
刚刚
刚刚
充电宝应助星星采纳,获得10
刚刚
刘海婷完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
黄东胜发布了新的文献求助10
2秒前
现代rong发布了新的文献求助10
2秒前
落后醉易发布了新的文献求助10
2秒前
星辰大海应助cassie采纳,获得10
2秒前
小贝完成签到,获得积分10
2秒前
3秒前
英俊的问夏应助RENFF采纳,获得10
3秒前
morry5007发布了新的文献求助10
3秒前
星星完成签到,获得积分10
4秒前
4秒前
sy7777完成签到,获得积分10
4秒前
4秒前
文献完成签到,获得积分10
5秒前
ning发布了新的文献求助10
5秒前
kk发布了新的文献求助10
5秒前
waiwai完成签到 ,获得积分10
5秒前
6秒前
刘霆勋发布了新的文献求助10
6秒前
顺利的边牧完成签到,获得积分10
6秒前
6秒前
辛勤面包发布了新的文献求助30
6秒前
干净初雪发布了新的文献求助10
7秒前
MC发布了新的文献求助10
7秒前
清脆苑博完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
generaliu发布了新的文献求助10
7秒前
软软萌萌发布了新的文献求助10
7秒前
落后醉易完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836