CapsFormer: A Novel Bearing Intelligent Fault Diagnosis Framework With Negligible Speed Change Under Small-Sample Conditions

稳健性(进化) 方位(导航) 断层(地质) 计算机科学 短时傅里叶变换 特征提取 人工智能 时域 模式识别(心理学) 工程类 傅里叶变换 傅里叶分析 计算机视觉 数学 数学分析 地质学 地震学 基因 生物化学 化学
作者
Yong Xu,Hui Tao,Weihua Li,Yong Zhong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:3
标识
DOI:10.1109/tim.2023.3318693
摘要

In actual industrial production, the load and speed of bearings are complex and changeable. However, most existing research on bearing fault diagnosis is based on constant speed conditions, and studies on bearing fault diagnosis at time-varying speeds are limited. Additionally, the scarcity of fault data further hinders practical applications of theoretical models developed so far. Thus, CapsFormer, a novel bearing intelligent fault diagnosis framework with negligible speed change under small-sample conditions, is proposed in this study. This framework combines the power of capsule network (CapsNet) and Transformer. It converts 1D time-domain samples into 2D time-frequency representations (TFRs) through short-time Fourier transform (STFT). Then it employs the idea of CapsNet to extract ordered spatial features from the TFRs of samples. On this basis, combined with the self-attention learning mechanism, it excavates deep fault features to promote the correct identification of bearing fault types by the model. Through experiments conducted under constant speed and time-varying speed conditions, the model was validated, demonstrating its superior performance compared to six other deep learning methods in bearing fault diagnosis under small sample sizes. These results strongly indicate the robustness of CapsFormer in addressing speed changes during bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
水穷云起完成签到,获得积分10
2秒前
Baiyu完成签到,获得积分10
4秒前
Huansun完成签到,获得积分10
4秒前
nuannuan发布了新的文献求助10
6秒前
帅气男孩应助Coco采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
加一完成签到,获得积分10
9秒前
熊蔓蔓完成签到,获得积分10
11秒前
dingyi601完成签到,获得积分10
11秒前
tt123完成签到,获得积分10
11秒前
12秒前
糟糕的学姐完成签到,获得积分10
13秒前
yookia应助vbbbj采纳,获得10
13秒前
今后应助124cndhaP采纳,获得30
14秒前
meng完成签到 ,获得积分10
15秒前
HHHZZZ完成签到,获得积分10
15秒前
香蕉沧海发布了新的文献求助10
16秒前
高挑的梦芝完成签到,获得积分10
17秒前
婷123发布了新的文献求助20
17秒前
18秒前
我不爱池鱼应助Torment采纳,获得10
18秒前
小阮完成签到,获得积分10
18秒前
18秒前
迷人问兰发布了新的文献求助30
19秒前
vovoking完成签到 ,获得积分10
19秒前
20秒前
Jasper应助nuannuan采纳,获得10
20秒前
hzwyyds应助栗子采纳,获得10
22秒前
李希发布了新的文献求助50
22秒前
英俊的铭应助元宝采纳,获得10
23秒前
ZJHYNL应助111采纳,获得20
23秒前
早睡早起发布了新的文献求助10
24秒前
鳗鱼焦完成签到 ,获得积分10
24秒前
新威宝贝发布了新的文献求助10
25秒前
Jocd完成签到,获得积分10
30秒前
小二郎应助SAOKA采纳,获得10
32秒前
农夫果园完成签到,获得积分10
34秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713