CapsFormer: A Novel Bearing Intelligent Fault Diagnosis Framework With Negligible Speed Change Under Small-Sample Conditions

稳健性(进化) 方位(导航) 断层(地质) 计算机科学 短时傅里叶变换 特征提取 人工智能 时域 模式识别(心理学) 工程类 傅里叶变换 傅里叶分析 计算机视觉 数学 数学分析 地质学 地震学 基因 生物化学 化学
作者
Yong Xu,Hui Tao,Weihua Li,Yong Zhong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:3
标识
DOI:10.1109/tim.2023.3318693
摘要

In actual industrial production, the load and speed of bearings are complex and changeable. However, most existing research on bearing fault diagnosis is based on constant speed conditions, and studies on bearing fault diagnosis at time-varying speeds are limited. Additionally, the scarcity of fault data further hinders practical applications of theoretical models developed so far. Thus, CapsFormer, a novel bearing intelligent fault diagnosis framework with negligible speed change under small-sample conditions, is proposed in this study. This framework combines the power of capsule network (CapsNet) and Transformer. It converts 1D time-domain samples into 2D time-frequency representations (TFRs) through short-time Fourier transform (STFT). Then it employs the idea of CapsNet to extract ordered spatial features from the TFRs of samples. On this basis, combined with the self-attention learning mechanism, it excavates deep fault features to promote the correct identification of bearing fault types by the model. Through experiments conducted under constant speed and time-varying speed conditions, the model was validated, demonstrating its superior performance compared to six other deep learning methods in bearing fault diagnosis under small sample sizes. These results strongly indicate the robustness of CapsFormer in addressing speed changes during bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Leo发布了新的文献求助20
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
苏书白应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
3秒前
3秒前
Leslie完成签到,获得积分20
4秒前
呆呆发布了新的文献求助10
4秒前
猫大熊发布了新的文献求助10
7秒前
7秒前
没有答案发布了新的文献求助10
9秒前
Djdidn完成签到,获得积分10
10秒前
11秒前
香蕉觅云应助炒山药采纳,获得10
11秒前
我是老大应助上进生采纳,获得10
12秒前
Leo完成签到,获得积分10
13秒前
搜集达人应助NANA1216采纳,获得10
14秒前
14秒前
Owen应助南宫誉采纳,获得10
14秒前
没有答案完成签到,获得积分20
15秒前
15秒前
上进生发布了新的文献求助10
15秒前
田様应助xiu-er采纳,获得10
17秒前
大魁完成签到,获得积分10
18秒前
大模型应助xxx采纳,获得10
18秒前
19秒前
梦丸完成签到 ,获得积分10
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157968
求助须知:如何正确求助?哪些是违规求助? 2809281
关于积分的说明 7881247
捐赠科研通 2467760
什么是DOI,文献DOI怎么找? 1313696
科研通“疑难数据库(出版商)”最低求助积分说明 630498
版权声明 601943