Towards robust registration of heterogeneous multispectral UAV imagery: A two-stage approach for cotton leaf lesion grading

多光谱图像 RGB颜色模型 人工智能 尺度不变特征变换 计算机视觉 像素 计算机科学 遥感 模式识别(心理学) 特征提取 地理
作者
Xinzhou Li,Junfeng Gao,S. Jin,Jong‐Wha Chong,Mingming Zhao,Mingzhou Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108153-108153
标识
DOI:10.1016/j.compag.2023.108153
摘要

Multiple source images acquired from diverse sensors mounted on unmanned aerial vehicles (UAVs) offer valuable complementary information for ground vegetation analysis. However, accurately aligning heterogeneous UAV images poses challenges due to differences in geometry, intensity, and noise resulting from varying imaging principles. This paper presents a two-stage registration method aimed at fusing visible RGB and multispectral images for cotton leaf lesion grading. The coarse alignment stage utilizes Scale Invariant Feature Transform (SIFT), while the refined alignment stage employs a novel correlation coefficient-based template matching. The proposed method first employs the EfficientDet network to detect infected cotton leaves with lesions in RGB images. Subsequently, lesion leaves in multiple spectral imagery (red, green, red edge, and near-infrared bands) are located using the perspective transformation matrix derived from SIFT and the coordinates of lesion leaves in RGB images. Refined registration between RGB and multispectral imagery is achieved through template matching with the new correlation coefficient. The registered reflectance data from the different spectral bands and RGB components are utilized to classify pixels in each infected leaf into lesion, healthy, and soil parts. The lesion grade is determined based on the ratio of lesion pixels to the total corresponding leaf area. Experimental results, compared with manual assessment, demonstrate a lesion leaves detection model with a [email protected] of 91.01% and a leaf lesion grading accuracy of 92.01%. These results validate the suitability of the proposed method for UAV RGB and multispectral image registration, enabling automated cotton leaf lesion grading.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加贝完成签到 ,获得积分10
2秒前
4秒前
xinjiasuki完成签到 ,获得积分10
5秒前
蔷薇完成签到,获得积分10
5秒前
我是老大应助陈麦采纳,获得10
6秒前
黄74185296完成签到,获得积分10
10秒前
Jun完成签到 ,获得积分10
11秒前
flysky120完成签到,获得积分10
12秒前
燕子完成签到,获得积分10
12秒前
ly普鲁卡因完成签到,获得积分10
13秒前
与离完成签到 ,获得积分10
13秒前
浅梦完成签到,获得积分10
14秒前
雪山飞龙发布了新的文献求助10
15秒前
15秒前
先锋完成签到 ,获得积分10
16秒前
害怕的冰颜完成签到 ,获得积分10
17秒前
科目三应助liujianxin采纳,获得10
18秒前
大模型应助liujianxin采纳,获得10
18秒前
张sir完成签到,获得积分10
19秒前
19秒前
追寻如雪完成签到 ,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
xyzlancet完成签到,获得积分10
23秒前
23秒前
科研通AI6应助标致小翠采纳,获得10
23秒前
胖胖不胖胖完成签到,获得积分10
24秒前
耍酷的雪糕完成签到,获得积分10
24秒前
30秒前
一颗橘子完成签到,获得积分10
32秒前
Thi发布了新的文献求助10
36秒前
38秒前
11号迪西馅饼完成签到,获得积分10
40秒前
44秒前
Davidjin发布了新的文献求助10
44秒前
单薄映易完成签到 ,获得积分10
44秒前
cij123完成签到,获得积分10
45秒前
46秒前
橙子完成签到,获得积分10
47秒前
淡定元珊完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086