Towards robust registration of heterogeneous multispectral UAV imagery: A two-stage approach for cotton leaf lesion grading

多光谱图像 RGB颜色模型 人工智能 尺度不变特征变换 计算机视觉 像素 计算机科学 遥感 模式识别(心理学) 特征提取 地理
作者
Xinzhou Li,Junfeng Gao,S. Jin,Jong‐Wha Chong,Mingming Zhao,Mingzhou Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108153-108153
标识
DOI:10.1016/j.compag.2023.108153
摘要

Multiple source images acquired from diverse sensors mounted on unmanned aerial vehicles (UAVs) offer valuable complementary information for ground vegetation analysis. However, accurately aligning heterogeneous UAV images poses challenges due to differences in geometry, intensity, and noise resulting from varying imaging principles. This paper presents a two-stage registration method aimed at fusing visible RGB and multispectral images for cotton leaf lesion grading. The coarse alignment stage utilizes Scale Invariant Feature Transform (SIFT), while the refined alignment stage employs a novel correlation coefficient-based template matching. The proposed method first employs the EfficientDet network to detect infected cotton leaves with lesions in RGB images. Subsequently, lesion leaves in multiple spectral imagery (red, green, red edge, and near-infrared bands) are located using the perspective transformation matrix derived from SIFT and the coordinates of lesion leaves in RGB images. Refined registration between RGB and multispectral imagery is achieved through template matching with the new correlation coefficient. The registered reflectance data from the different spectral bands and RGB components are utilized to classify pixels in each infected leaf into lesion, healthy, and soil parts. The lesion grade is determined based on the ratio of lesion pixels to the total corresponding leaf area. Experimental results, compared with manual assessment, demonstrate a lesion leaves detection model with a [email protected] of 91.01% and a leaf lesion grading accuracy of 92.01%. These results validate the suitability of the proposed method for UAV RGB and multispectral image registration, enabling automated cotton leaf lesion grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我不爱学习完成签到,获得积分20
1秒前
2秒前
2秒前
3秒前
z_发布了新的文献求助10
4秒前
4秒前
4秒前
祥子完成签到,获得积分10
6秒前
入袍完成签到,获得积分10
6秒前
某某某发布了新的文献求助10
6秒前
6秒前
外向翠萱发布了新的文献求助10
7秒前
儒雅的猪八蛋完成签到,获得积分10
7秒前
7秒前
8秒前
Yihong发布了新的文献求助10
8秒前
FashionBoy应助吕懿采纳,获得10
8秒前
8秒前
su驳回了华仔应助
9秒前
Vincent发布了新的文献求助10
10秒前
奋斗寄文完成签到,获得积分10
10秒前
shawn发布了新的文献求助10
10秒前
嘻哈二代发布了新的文献求助10
10秒前
11秒前
13秒前
积木123完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
ygl0217发布了新的文献求助10
14秒前
yogurt_tju完成签到,获得积分10
15秒前
DORA完成签到,获得积分10
15秒前
机智谷蕊应助lyp采纳,获得10
15秒前
顾矜应助阿巴阿巴采纳,获得10
15秒前
Yihong完成签到,获得积分10
15秒前
外向翠萱完成签到,获得积分10
16秒前
16秒前
谦让萧完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919