Enhancing Neural Segmentation on Low-Quality SEM Images Using Self-Attention Based Fusion Module with Auxiliary Deblurring Network

去模糊 计算机科学 人工智能 分割 连接组学 稳健性(进化) 模式识别(心理学) 计算机视觉 人工神经网络 图像分割 尺度空间分割 编码器 深度学习 图像处理 连接体 图像复原 图像(数学) 生物化学 化学 神经科学 功能连接 基因 生物 操作系统
作者
Ao Cheng,Gang Ma,Lesong Zheng,Yuhang Chen,Lirong Wang,Ruobing Zhang
标识
DOI:10.1109/icbcb57893.2023.10246655
摘要

The connectomics and morphology of nerves are essential to basic neuroscience since the neuron system is crucial in the human body. To reconstruct the morphological structure of nerve cells, highly robust segmentation methods are necessary for biological neural connectome analysis. However, current continuous imaging techniques, scanning electron microscope (SEM), inevitably generate low-quality images from automated data acquisition, making neural segmentation a challenging task. Deep learning has made progress in large-scale instance segmentation, but current methods have several limitations when processing blurry images. In this paper, we propose an adaptive attention-based fusion with an auxiliary deblurring decoding network and a main segmentation decoding network to enhance neural segmentation on low-quality SEM images. Our method uses dual task learning to split the complex task into two parts: segmentation and deblurring. The model is designed in an end-to-end structure with a shared encoder and two separate decoders, where it can output both segmentation and deblurring results simultaneously. The proposed method outperforms other methods on two dataset and gains the lowest Voi and A-Rand. The proposed method improves the robustness and accuracy of neural segmentation by enhancing low-quality SEM images. Furthermore, this architecture provides a potential solution against low-quality effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得30
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
远了个方发布了新的文献求助20
刚刚
pluto应助科研通管家采纳,获得10
刚刚
快乐滑板应助科研通管家采纳,获得10
刚刚
cgshao完成签到,获得积分10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
清川映叶应助科研通管家采纳,获得10
刚刚
cocolu应助科研通管家采纳,获得10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
夏来应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
劲秉应助yuiiuy采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
热心易绿完成签到 ,获得积分10
2秒前
优美雨筠发布了新的文献求助10
2秒前
外向的不尤完成签到,获得积分20
2秒前
所幸完成签到,获得积分10
3秒前
芬芬完成签到,获得积分10
4秒前
4秒前
等等发布了新的文献求助10
4秒前
Wuwei完成签到 ,获得积分10
5秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464070
求助须知:如何正确求助?哪些是违规求助? 3057259
关于积分的说明 9056694
捐赠科研通 2747427
什么是DOI,文献DOI怎么找? 1507362
科研通“疑难数据库(出版商)”最低求助积分说明 696491
邀请新用户注册赠送积分活动 696004