Missing view completion for multi-timepoints omics data via representation disentanglement and temporal knowledge transfer

代表(政治) 计算机科学 缺少数据 知识转移 数据挖掘 机器学习 知识管理 政治学 政治 法学
作者
Siyu Han,Shixiang Yu,Mengya Shi,Makoto Harada,Jianhong Ge,Jie-sheng Lin,Cornelia Prehn,Agnese Petrera,Ying Li,Flora Sam,Giuseppe Matullo,Jerzy Adamski,Karsten Suhre,Christian Gieger,Stefanie M. Hauck,Christian Herder,Michael Roden,Francesco Paolo Casale,Na Cai,Annette Peters
标识
DOI:10.1101/2023.09.26.559302
摘要

Abstract Longitudinal multi-view omics data offer unique insights into the temporal dynamics of individual-level physiology, which provides opportunities to advance personalized healthcare. However, the common occurrence of incomplete views makes extrapolation tasks difficult, and there is a lack of tailored methods for this critical issue. Here, we introduce LEOPARD, an innovative approach specifically designed to complete missing views in multi-timepoint omics data. By disentangling longitudinal omics data into content and temporal representations, LEOPARD transfers the temporal knowledge to the omics-specific content, thereby completing missing views. The effectiveness of LEOPARD is validated on three benchmark datasets constructed with data from the MGH COVID study and the KORA cohort, spanning periods from 3 days to 14 years. Compared to conventional imputation methods, such as missForest, PMM, GLMM, and cGAN, LEOPARD yields the most robust results across the benchmark datasets. LEOPARD-imputed data also achieve the highest agreement with observed data in our analyses for age-associated metabolites detection, estimated glomerular filtration rate-associated proteins identification, and chronic kidney disease prediction. Our work takes the first step toward a generalized treatment of missing views in longitudinal omics data, enabling comprehensive exploration of temporal dynamics and providing valuable insights into personalized healthcare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liang完成签到,获得积分10
刚刚
刚刚
ddd发布了新的文献求助10
2秒前
拜托你清醒一点完成签到,获得积分10
2秒前
4秒前
4秒前
scyljq发布了新的文献求助10
4秒前
5秒前
萤火虫完成签到,获得积分0
7秒前
絔梦完成签到,获得积分10
7秒前
9秒前
9秒前
萤火虫发布了新的文献求助10
9秒前
鱼鱼子999发布了新的文献求助10
10秒前
10秒前
薛华倩完成签到,获得积分10
10秒前
阿罗宁宁完成签到 ,获得积分20
11秒前
11秒前
天明完成签到,获得积分10
13秒前
Yiling完成签到,获得积分10
14秒前
舒心思雁发布了新的文献求助10
14秒前
111发布了新的文献求助10
14秒前
bellaluna完成签到 ,获得积分10
14秒前
初识发布了新的文献求助10
15秒前
聪明摩托发布了新的文献求助10
15秒前
安静无招完成签到 ,获得积分10
16秒前
18秒前
橙色的橘子完成签到 ,获得积分10
18秒前
19秒前
科研通AI5应助绝情继父采纳,获得10
19秒前
Cupid完成签到,获得积分10
20秒前
舒心思雁完成签到,获得积分10
20秒前
可爱的函函应助jie采纳,获得10
21秒前
负责的刺猬关注了科研通微信公众号
23秒前
23秒前
思源应助yyc采纳,获得10
24秒前
Edelweiss发布了新的文献求助10
24秒前
25秒前
科目三应助科研通管家采纳,获得10
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730482
求助须知:如何正确求助?哪些是违规求助? 3275115
关于积分的说明 9991221
捐赠科研通 2990742
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779622
科研通“疑难数据库(出版商)”最低求助积分说明 748331