Long-term multivariate time series forecasting in data centers based on multi-factor separation evolutionary spatial–temporal graph neural networks

计算机科学 杠杆(统计) 数据挖掘 图形 时间序列 因子图 时态数据库 人工智能 机器学习 理论计算机科学 算法 解码方法
作者
Fang Shen,Jialong Wang,Ziwei Zhang,Xin Wang,Yue Li,Zhaowei Geng,Bing Pan,Zengyi Lu,Wendy Zhao,Wenwu Zhu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 110997-110997 被引量:2
标识
DOI:10.1016/j.knosys.2023.110997
摘要

Data center infrastructures require constant monitoring to ensure stable and reliable operation and time-series forecasting plays an indispensable role in intelligent operations and maintenance in data centers. However, the potential for accurate time-series predictions is often limited due to the overlooked relationships between data records from independent sensors. Inferring relationships for a potential graph representation of a data center is challenging due to complex relationships between nodes and multiple factors that may cause connections between them. Moreover, graphs change dynamically in long-term predictions, but current methods do not account for future graph changes. To address these challenges, we propose a long-term time-series forecasting framework called Multi-factor Separation Evolutionary Spatial–Temporal Graph Neural Networks (MSE-STGNN). Our framework considers edge diversity, graph changes and spatial–temporal architecture in long-term prediction processes and proposes three modules. Specifically, we propose a Multi-factor Separation (MS) module to separate the factors influencing node connectivity, enabling the acquisition of a graph more closely aligned with actual circumstances; then we propose a Graph Prediction (GP) module to incorporate future graphs to correct errors in the graph on which multi-step predictions depend. Moreover, we propose an Attention-enhanced Spatial–temporal dilated causal convolution module (AS-Conv) to more effectively leverage information pertaining to spatial and historical events. Our experimental results on datasets comprising of temperature and IT power data collected from real-world data centers show that the proposed method outperforms other advanced prediction methods in terms of prediction accuracy, and the learned latent graphs are explainable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baitiaolangli发布了新的文献求助10
刚刚
少堂完成签到,获得积分10
刚刚
花汀酒完成签到 ,获得积分10
1秒前
学吧完成签到,获得积分10
2秒前
Niujy完成签到,获得积分10
2秒前
Qin发布了新的文献求助30
2秒前
3秒前
zhgj发布了新的文献求助10
3秒前
4秒前
111发布了新的文献求助30
4秒前
JsT完成签到,获得积分10
4秒前
达尔杜弗完成签到,获得积分10
5秒前
丘比特应助阿龙采纳,获得10
5秒前
郑小七完成签到,获得积分10
5秒前
矮小的向雪完成签到 ,获得积分10
5秒前
Hello应助登登采纳,获得10
5秒前
5秒前
向日葵完成签到,获得积分10
7秒前
我是老大应助wzc采纳,获得10
7秒前
索多倍完成签到 ,获得积分10
7秒前
周全发布了新的文献求助50
7秒前
Hello应助wolf采纳,获得20
7秒前
诚心的飞扬应助Niujy采纳,获得10
8秒前
8秒前
8秒前
9秒前
科研通AI6应助keyan采纳,获得10
9秒前
王逸飞完成签到,获得积分10
10秒前
keyanqianjin发布了新的文献求助10
10秒前
11秒前
高兴微笑发布了新的文献求助10
11秒前
zhgj完成签到,获得积分20
11秒前
十一苗完成签到 ,获得积分10
11秒前
赘婿应助想瘦的海豹采纳,获得10
11秒前
刘成完成签到,获得积分10
12秒前
弓长木易发布了新的文献求助10
12秒前
冷静的夏槐完成签到,获得积分10
12秒前
13秒前
wanci应助Dinglin采纳,获得10
13秒前
Bingtao_Lian完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659205
求助须知:如何正确求助?哪些是违规求助? 4827677
关于积分的说明 15085891
捐赠科研通 4817891
什么是DOI,文献DOI怎么找? 2578393
邀请新用户注册赠送积分活动 1533047
关于科研通互助平台的介绍 1491746