Long-term multivariate time series forecasting in data centers based on multi-factor separation evolutionary spatial–temporal graph neural networks

计算机科学 杠杆(统计) 数据挖掘 图形 时间序列 因子图 时态数据库 人工智能 机器学习 理论计算机科学 算法 解码方法
作者
Fang Shen,Jialong Wang,Ziwei Zhang,Xin Wang,Yue Li,Zhaowei Geng,Bing Pan,Zengyi Lu,Wendy Zhao,Wenwu Zhu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 110997-110997 被引量:2
标识
DOI:10.1016/j.knosys.2023.110997
摘要

Data center infrastructures require constant monitoring to ensure stable and reliable operation and time-series forecasting plays an indispensable role in intelligent operations and maintenance in data centers. However, the potential for accurate time-series predictions is often limited due to the overlooked relationships between data records from independent sensors. Inferring relationships for a potential graph representation of a data center is challenging due to complex relationships between nodes and multiple factors that may cause connections between them. Moreover, graphs change dynamically in long-term predictions, but current methods do not account for future graph changes. To address these challenges, we propose a long-term time-series forecasting framework called Multi-factor Separation Evolutionary Spatial–Temporal Graph Neural Networks (MSE-STGNN). Our framework considers edge diversity, graph changes and spatial–temporal architecture in long-term prediction processes and proposes three modules. Specifically, we propose a Multi-factor Separation (MS) module to separate the factors influencing node connectivity, enabling the acquisition of a graph more closely aligned with actual circumstances; then we propose a Graph Prediction (GP) module to incorporate future graphs to correct errors in the graph on which multi-step predictions depend. Moreover, we propose an Attention-enhanced Spatial–temporal dilated causal convolution module (AS-Conv) to more effectively leverage information pertaining to spatial and historical events. Our experimental results on datasets comprising of temperature and IT power data collected from real-world data centers show that the proposed method outperforms other advanced prediction methods in terms of prediction accuracy, and the learned latent graphs are explainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助小梁要加油采纳,获得10
刚刚
杰克发布了新的文献求助10
1秒前
liuq完成签到,获得积分10
2秒前
2秒前
5秒前
爱吃猫的鱼完成签到 ,获得积分10
5秒前
5秒前
哞哞完成签到,获得积分10
5秒前
颗粒完成签到,获得积分10
6秒前
6秒前
8秒前
Elsa完成签到,获得积分10
8秒前
8秒前
榴下晨光完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
章铭-111发布了新的文献求助10
9秒前
薪炭林应助su采纳,获得10
10秒前
am完成签到 ,获得积分10
10秒前
Hangerli发布了新的文献求助10
11秒前
Akim应助嘟嘟采纳,获得10
12秒前
12秒前
优雅铭完成签到,获得积分10
12秒前
Elsa发布了新的文献求助10
13秒前
13秒前
Mars完成签到,获得积分10
14秒前
杰克完成签到,获得积分20
14秒前
Chen关注了科研通微信公众号
15秒前
红红发布了新的文献求助10
15秒前
16秒前
小二郎应助高磊采纳,获得10
16秒前
17秒前
yu完成签到,获得积分10
17秒前
li完成签到,获得积分10
18秒前
Stephanie发布了新的文献求助10
20秒前
口腔飞飞完成签到 ,获得积分10
20秒前
充电宝应助翠翠采纳,获得10
20秒前
雨下着的坡道完成签到,获得积分10
22秒前
lisizheng完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808