Long-term multivariate time series forecasting in data centers based on multi-factor separation evolutionary spatial–temporal graph neural networks

计算机科学 杠杆(统计) 数据挖掘 图形 时间序列 因子图 时态数据库 人工智能 机器学习 理论计算机科学 算法 解码方法
作者
Fang Shen,Jialong Wang,Ziwei Zhang,Xin Wang,Yue Li,Zhaowei Geng,Bing Pan,Zengyi Lu,Wendy Zhao,Wenwu Zhu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 110997-110997 被引量:2
标识
DOI:10.1016/j.knosys.2023.110997
摘要

Data center infrastructures require constant monitoring to ensure stable and reliable operation and time-series forecasting plays an indispensable role in intelligent operations and maintenance in data centers. However, the potential for accurate time-series predictions is often limited due to the overlooked relationships between data records from independent sensors. Inferring relationships for a potential graph representation of a data center is challenging due to complex relationships between nodes and multiple factors that may cause connections between them. Moreover, graphs change dynamically in long-term predictions, but current methods do not account for future graph changes. To address these challenges, we propose a long-term time-series forecasting framework called Multi-factor Separation Evolutionary Spatial–Temporal Graph Neural Networks (MSE-STGNN). Our framework considers edge diversity, graph changes and spatial–temporal architecture in long-term prediction processes and proposes three modules. Specifically, we propose a Multi-factor Separation (MS) module to separate the factors influencing node connectivity, enabling the acquisition of a graph more closely aligned with actual circumstances; then we propose a Graph Prediction (GP) module to incorporate future graphs to correct errors in the graph on which multi-step predictions depend. Moreover, we propose an Attention-enhanced Spatial–temporal dilated causal convolution module (AS-Conv) to more effectively leverage information pertaining to spatial and historical events. Our experimental results on datasets comprising of temperature and IT power data collected from real-world data centers show that the proposed method outperforms other advanced prediction methods in terms of prediction accuracy, and the learned latent graphs are explainable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Augenstern采纳,获得10
1秒前
1秒前
1秒前
云一朵完成签到,获得积分10
1秒前
可爱的函函应助aaa采纳,获得10
1秒前
怎样发布了新的文献求助10
1秒前
科研小虫完成签到,获得积分10
3秒前
缓慢的王完成签到,获得积分10
3秒前
5秒前
脑洞疼应助张晓倩采纳,获得10
6秒前
pp发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
6秒前
文静的麦片完成签到,获得积分10
9秒前
落后的凝梦完成签到 ,获得积分10
9秒前
SciGPT应助GongSyi采纳,获得10
12秒前
12秒前
科研通AI2S应助珂珂采纳,获得10
13秒前
HIHI完成签到,获得积分10
14秒前
充电宝应助流光采纳,获得10
14秒前
15秒前
无私雅柏完成签到 ,获得积分10
17秒前
张晓倩发布了新的文献求助10
18秒前
18秒前
xiaolin完成签到 ,获得积分10
19秒前
20秒前
fdsjk发布了新的文献求助10
20秒前
哈哈哈哈哈哈哈完成签到,获得积分20
20秒前
香蕉觅云应助捏嘿采纳,获得10
21秒前
21秒前
dungaway完成签到,获得积分10
25秒前
wendy发布了新的文献求助10
25秒前
淡淡的向雁完成签到,获得积分10
27秒前
ycy完成签到,获得积分10
27秒前
破忒头完成签到,获得积分10
29秒前
慕青应助时尚的大开采纳,获得30
29秒前
科研通AI6应助whisper采纳,获得10
29秒前
研友_8DrX3n发布了新的文献求助10
29秒前
30秒前
31秒前
你嵙这个期刊没买应助gaga采纳,获得20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567358
求助须知:如何正确求助?哪些是违规求助? 4652068
关于积分的说明 14698727
捐赠科研通 4593864
什么是DOI,文献DOI怎么找? 2520491
邀请新用户注册赠送积分活动 1492641
关于科研通互助平台的介绍 1463607