Long-term multivariate time series forecasting in data centers based on multi-factor separation evolutionary spatial–temporal graph neural networks

计算机科学 杠杆(统计) 数据挖掘 图形 时间序列 因子图 时态数据库 人工智能 机器学习 理论计算机科学 算法 解码方法
作者
Fang Shen,Jialong Wang,Ziwei Zhang,Xin Wang,Yue Li,Zhaowei Geng,Bing Pan,Zengyi Lu,Wendy Zhao,Wenwu Zhu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:280: 110997-110997 被引量:2
标识
DOI:10.1016/j.knosys.2023.110997
摘要

Data center infrastructures require constant monitoring to ensure stable and reliable operation and time-series forecasting plays an indispensable role in intelligent operations and maintenance in data centers. However, the potential for accurate time-series predictions is often limited due to the overlooked relationships between data records from independent sensors. Inferring relationships for a potential graph representation of a data center is challenging due to complex relationships between nodes and multiple factors that may cause connections between them. Moreover, graphs change dynamically in long-term predictions, but current methods do not account for future graph changes. To address these challenges, we propose a long-term time-series forecasting framework called Multi-factor Separation Evolutionary Spatial–Temporal Graph Neural Networks (MSE-STGNN). Our framework considers edge diversity, graph changes and spatial–temporal architecture in long-term prediction processes and proposes three modules. Specifically, we propose a Multi-factor Separation (MS) module to separate the factors influencing node connectivity, enabling the acquisition of a graph more closely aligned with actual circumstances; then we propose a Graph Prediction (GP) module to incorporate future graphs to correct errors in the graph on which multi-step predictions depend. Moreover, we propose an Attention-enhanced Spatial–temporal dilated causal convolution module (AS-Conv) to more effectively leverage information pertaining to spatial and historical events. Our experimental results on datasets comprising of temperature and IT power data collected from real-world data centers show that the proposed method outperforms other advanced prediction methods in terms of prediction accuracy, and the learned latent graphs are explainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李莉莉完成签到,获得积分10
刚刚
花酒发布了新的文献求助10
1秒前
111发布了新的文献求助10
1秒前
ocean发布了新的文献求助10
1秒前
小蘑菇应助Jennie369采纳,获得10
2秒前
2秒前
兴奋大马喽完成签到,获得积分10
2秒前
垣味栗子酱完成签到,获得积分10
3秒前
优秀的叫兽完成签到,获得积分20
4秒前
meddy发布了新的文献求助10
4秒前
充电宝应助猪猪hero采纳,获得10
4秒前
无心的浩轩完成签到,获得积分10
4秒前
5秒前
小小K发布了新的文献求助10
6秒前
爱吃泡芙完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
坚强的紫菜完成签到,获得积分10
8秒前
花酒完成签到,获得积分10
8秒前
9秒前
10秒前
一心想出文章完成签到,获得积分10
10秒前
回复对方发布了新的文献求助10
11秒前
大福蛙完成签到,获得积分10
11秒前
吕景宽完成签到,获得积分10
12秒前
阿帕奇发布了新的文献求助10
13秒前
布溜应助liyanping采纳,获得10
13秒前
15秒前
lcc完成签到,获得积分20
15秒前
lilylian发布了新的文献求助30
15秒前
猪猪hero发布了新的文献求助10
16秒前
16秒前
小二郎应助111采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
18秒前
浮游应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012082
求助须知:如何正确求助?哪些是违规求助? 4253380
关于积分的说明 13253836
捐赠科研通 4056167
什么是DOI,文献DOI怎么找? 2218590
邀请新用户注册赠送积分活动 1228157
关于科研通互助平台的介绍 1150587