Long-term multivariate time series forecasting in data centers based on multi-factor separation evolutionary spatial–temporal graph neural networks

计算机科学 杠杆(统计) 数据挖掘 图形 时间序列 因子图 时态数据库 人工智能 机器学习 理论计算机科学 算法 解码方法
作者
Fang Shen,Jialong Wang,Ziwei Zhang,Xin Wang,Yue Li,Zhaowei Geng,Bing Pan,Zengyi Lu,Wendy Zhao,Wenwu Zhu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 110997-110997 被引量:2
标识
DOI:10.1016/j.knosys.2023.110997
摘要

Data center infrastructures require constant monitoring to ensure stable and reliable operation and time-series forecasting plays an indispensable role in intelligent operations and maintenance in data centers. However, the potential for accurate time-series predictions is often limited due to the overlooked relationships between data records from independent sensors. Inferring relationships for a potential graph representation of a data center is challenging due to complex relationships between nodes and multiple factors that may cause connections between them. Moreover, graphs change dynamically in long-term predictions, but current methods do not account for future graph changes. To address these challenges, we propose a long-term time-series forecasting framework called Multi-factor Separation Evolutionary Spatial–Temporal Graph Neural Networks (MSE-STGNN). Our framework considers edge diversity, graph changes and spatial–temporal architecture in long-term prediction processes and proposes three modules. Specifically, we propose a Multi-factor Separation (MS) module to separate the factors influencing node connectivity, enabling the acquisition of a graph more closely aligned with actual circumstances; then we propose a Graph Prediction (GP) module to incorporate future graphs to correct errors in the graph on which multi-step predictions depend. Moreover, we propose an Attention-enhanced Spatial–temporal dilated causal convolution module (AS-Conv) to more effectively leverage information pertaining to spatial and historical events. Our experimental results on datasets comprising of temperature and IT power data collected from real-world data centers show that the proposed method outperforms other advanced prediction methods in terms of prediction accuracy, and the learned latent graphs are explainable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
盛清让完成签到,获得积分10
刚刚
1秒前
1秒前
无情寒珊完成签到,获得积分10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
SciGPT应助不以为然采纳,获得10
2秒前
2秒前
小山峰2290完成签到,获得积分10
3秒前
4秒前
refd完成签到,获得积分10
5秒前
5秒前
俄而完成签到 ,获得积分10
5秒前
PGH发布了新的文献求助10
5秒前
chen发布了新的文献求助10
5秒前
脑三问完成签到,获得积分10
6秒前
6秒前
Jiahaowang完成签到,获得积分20
6秒前
慕青应助qinandi124采纳,获得10
6秒前
Qiancheni完成签到,获得积分10
6秒前
www发布了新的文献求助10
6秒前
我不到啊发布了新的文献求助10
6秒前
Hello应助呆萌的藏今采纳,获得10
6秒前
6秒前
wbshore发布了新的文献求助10
7秒前
7秒前
GC发布了新的文献求助10
7秒前
kyle发布了新的文献求助10
7秒前
orixero应助keyanrubbish采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
sg发布了新的文献求助10
8秒前
8秒前
8秒前
慕青应助刘丰铭采纳,获得10
8秒前
miaomiao完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608628
求助须知:如何正确求助?哪些是违规求助? 4693398
关于积分的说明 14877890
捐赠科研通 4718180
什么是DOI,文献DOI怎么找? 2544398
邀请新用户注册赠送积分活动 1509479
关于科研通互助平台的介绍 1472844