Long-term multivariate time series forecasting in data centers based on multi-factor separation evolutionary spatial–temporal graph neural networks

计算机科学 杠杆(统计) 数据挖掘 图形 时间序列 因子图 时态数据库 人工智能 机器学习 理论计算机科学 算法 解码方法
作者
Fang Shen,Jialong Wang,Ziwei Zhang,Xin Wang,Yue Li,Zhaowei Geng,Bing Pan,Zengyi Lu,Wendy Zhao,Wenwu Zhu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:280: 110997-110997 被引量:2
标识
DOI:10.1016/j.knosys.2023.110997
摘要

Data center infrastructures require constant monitoring to ensure stable and reliable operation and time-series forecasting plays an indispensable role in intelligent operations and maintenance in data centers. However, the potential for accurate time-series predictions is often limited due to the overlooked relationships between data records from independent sensors. Inferring relationships for a potential graph representation of a data center is challenging due to complex relationships between nodes and multiple factors that may cause connections between them. Moreover, graphs change dynamically in long-term predictions, but current methods do not account for future graph changes. To address these challenges, we propose a long-term time-series forecasting framework called Multi-factor Separation Evolutionary Spatial–Temporal Graph Neural Networks (MSE-STGNN). Our framework considers edge diversity, graph changes and spatial–temporal architecture in long-term prediction processes and proposes three modules. Specifically, we propose a Multi-factor Separation (MS) module to separate the factors influencing node connectivity, enabling the acquisition of a graph more closely aligned with actual circumstances; then we propose a Graph Prediction (GP) module to incorporate future graphs to correct errors in the graph on which multi-step predictions depend. Moreover, we propose an Attention-enhanced Spatial–temporal dilated causal convolution module (AS-Conv) to more effectively leverage information pertaining to spatial and historical events. Our experimental results on datasets comprising of temperature and IT power data collected from real-world data centers show that the proposed method outperforms other advanced prediction methods in terms of prediction accuracy, and the learned latent graphs are explainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞猪完成签到,获得积分20
刚刚
liaodongjun应助易念采纳,获得10
1秒前
2秒前
y13333发布了新的文献求助10
4秒前
5秒前
拼搏幻竹完成签到,获得积分20
8秒前
刘先生发布了新的文献求助10
10秒前
13秒前
所所应助维尼采纳,获得10
13秒前
14秒前
花薇Liv完成签到,获得积分10
16秒前
2224536发布了新的文献求助10
16秒前
namelorna完成签到,获得积分10
17秒前
戴帽子发布了新的文献求助10
18秒前
19秒前
欧阳正义发布了新的文献求助10
23秒前
刘国建郭菱香完成签到 ,获得积分10
23秒前
凉薄少年应助曾建采纳,获得10
25秒前
勤恳傻姑发布了新的文献求助10
26秒前
牛马完成签到,获得积分10
27秒前
dilibolaba发布了新的文献求助10
27秒前
不安的松完成签到 ,获得积分10
28秒前
28秒前
31秒前
勤恳傻姑完成签到,获得积分10
33秒前
维尼发布了新的文献求助10
33秒前
dilibolaba完成签到 ,获得积分20
33秒前
tt完成签到,获得积分10
33秒前
33秒前
35秒前
35秒前
解语花发布了新的文献求助10
36秒前
36秒前
小豆豆应助阿燕采纳,获得10
37秒前
redking发布了新的文献求助10
40秒前
默默完成签到,获得积分10
41秒前
42秒前
neilphilosci完成签到 ,获得积分10
42秒前
silver_lin发布了新的文献求助10
42秒前
科研通AI5应助易念采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498