Long-term multivariate time series forecasting in data centers based on multi-factor separation evolutionary spatial–temporal graph neural networks

计算机科学 杠杆(统计) 数据挖掘 图形 时间序列 因子图 时态数据库 人工智能 机器学习 理论计算机科学 算法 解码方法
作者
Fang Shen,Jialong Wang,Ziwei Zhang,Xin Wang,Yue Li,Zhaowei Geng,Bing Pan,Zengyi Lu,Wendy Zhao,Wenwu Zhu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 110997-110997 被引量:2
标识
DOI:10.1016/j.knosys.2023.110997
摘要

Data center infrastructures require constant monitoring to ensure stable and reliable operation and time-series forecasting plays an indispensable role in intelligent operations and maintenance in data centers. However, the potential for accurate time-series predictions is often limited due to the overlooked relationships between data records from independent sensors. Inferring relationships for a potential graph representation of a data center is challenging due to complex relationships between nodes and multiple factors that may cause connections between them. Moreover, graphs change dynamically in long-term predictions, but current methods do not account for future graph changes. To address these challenges, we propose a long-term time-series forecasting framework called Multi-factor Separation Evolutionary Spatial–Temporal Graph Neural Networks (MSE-STGNN). Our framework considers edge diversity, graph changes and spatial–temporal architecture in long-term prediction processes and proposes three modules. Specifically, we propose a Multi-factor Separation (MS) module to separate the factors influencing node connectivity, enabling the acquisition of a graph more closely aligned with actual circumstances; then we propose a Graph Prediction (GP) module to incorporate future graphs to correct errors in the graph on which multi-step predictions depend. Moreover, we propose an Attention-enhanced Spatial–temporal dilated causal convolution module (AS-Conv) to more effectively leverage information pertaining to spatial and historical events. Our experimental results on datasets comprising of temperature and IT power data collected from real-world data centers show that the proposed method outperforms other advanced prediction methods in terms of prediction accuracy, and the learned latent graphs are explainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助liu采纳,获得20
刚刚
Sci完成签到,获得积分10
刚刚
Hrx完成签到,获得积分10
1秒前
青烟完成签到 ,获得积分10
1秒前
2秒前
星辰大海应助YY采纳,获得10
2秒前
yh完成签到,获得积分10
3秒前
4秒前
kexuezhongxinhu完成签到 ,获得积分10
4秒前
WuZY发布了新的文献求助10
5秒前
5秒前
orixero应助无恙采纳,获得10
6秒前
7秒前
cheng发布了新的文献求助10
8秒前
后海发布了新的文献求助10
9秒前
9秒前
Muhammad发布了新的文献求助10
10秒前
12秒前
充电宝应助天真亦旋采纳,获得10
13秒前
13秒前
Gzh_NJ完成签到,获得积分10
14秒前
艳阳天完成签到 ,获得积分10
14秒前
123木头人发布了新的文献求助10
14秒前
二中所长发布了新的文献求助10
15秒前
红姐1993发布了新的文献求助30
16秒前
量子星尘发布了新的文献求助10
16秒前
CipherSage应助爹爹采纳,获得10
17秒前
whl完成签到 ,获得积分10
18秒前
牛牛发布了新的文献求助10
18秒前
Orange应助泽锦臻采纳,获得10
19秒前
Muhammad完成签到,获得积分10
20秒前
20秒前
关耳完成签到 ,获得积分10
20秒前
22秒前
YESKY发布了新的文献求助10
24秒前
天阳发布了新的文献求助10
24秒前
24秒前
hong发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453565
求助须知:如何正确求助?哪些是违规求助? 4561168
关于积分的说明 14280936
捐赠科研通 4485139
什么是DOI,文献DOI怎么找? 2456484
邀请新用户注册赠送积分活动 1447252
关于科研通互助平台的介绍 1422652