Long-term multivariate time series forecasting in data centers based on multi-factor separation evolutionary spatial–temporal graph neural networks

计算机科学 杠杆(统计) 数据挖掘 图形 时间序列 因子图 时态数据库 人工智能 机器学习 理论计算机科学 算法 解码方法
作者
Fang Shen,Jialong Wang,Ziwei Zhang,Xin Wang,Yue Li,Zhaowei Geng,Bing Pan,Zengyi Lu,Wendy Zhao,Wenwu Zhu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 110997-110997 被引量:2
标识
DOI:10.1016/j.knosys.2023.110997
摘要

Data center infrastructures require constant monitoring to ensure stable and reliable operation and time-series forecasting plays an indispensable role in intelligent operations and maintenance in data centers. However, the potential for accurate time-series predictions is often limited due to the overlooked relationships between data records from independent sensors. Inferring relationships for a potential graph representation of a data center is challenging due to complex relationships between nodes and multiple factors that may cause connections between them. Moreover, graphs change dynamically in long-term predictions, but current methods do not account for future graph changes. To address these challenges, we propose a long-term time-series forecasting framework called Multi-factor Separation Evolutionary Spatial–Temporal Graph Neural Networks (MSE-STGNN). Our framework considers edge diversity, graph changes and spatial–temporal architecture in long-term prediction processes and proposes three modules. Specifically, we propose a Multi-factor Separation (MS) module to separate the factors influencing node connectivity, enabling the acquisition of a graph more closely aligned with actual circumstances; then we propose a Graph Prediction (GP) module to incorporate future graphs to correct errors in the graph on which multi-step predictions depend. Moreover, we propose an Attention-enhanced Spatial–temporal dilated causal convolution module (AS-Conv) to more effectively leverage information pertaining to spatial and historical events. Our experimental results on datasets comprising of temperature and IT power data collected from real-world data centers show that the proposed method outperforms other advanced prediction methods in terms of prediction accuracy, and the learned latent graphs are explainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz关闭了zzz文献求助
刚刚
Ava应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
shangizibiao应助科研通管家采纳,获得100
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
2秒前
3秒前
4秒前
Polly发布了新的文献求助10
5秒前
6秒前
李文岐发布了新的文献求助10
9秒前
娟老师完成签到,获得积分10
11秒前
高强发布了新的文献求助10
13秒前
13秒前
小二郎应助They_say采纳,获得10
14秒前
16秒前
如意易形完成签到,获得积分10
17秒前
喵咕嘟完成签到 ,获得积分20
17秒前
lin发布了新的文献求助10
17秒前
kkk发布了新的文献求助30
18秒前
善学以致用应助啊哦呃采纳,获得10
18秒前
Polly完成签到,获得积分10
19秒前
kong完成签到,获得积分10
20秒前
Sandro发布了新的文献求助50
20秒前
lerrygg发布了新的文献求助20
21秒前
QinQin发布了新的文献求助10
23秒前
任性土豆完成签到,获得积分10
25秒前
lin完成签到,获得积分10
25秒前
月蚀六花发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
zgb完成签到 ,获得积分10
27秒前
月蚀六花发布了新的文献求助10
27秒前
月蚀六花发布了新的文献求助10
27秒前
月蚀六花发布了新的文献求助10
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329350
求助须知:如何正确求助?哪些是违规求助? 2959031
关于积分的说明 8594090
捐赠科研通 2637507
什么是DOI,文献DOI怎么找? 1443599
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656176