Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization

计算机科学 人工智能 分割 概化理论 先验概率 正规化(语言学) 模式识别(心理学) 像素 班级(哲学) 特征(语言学) 特征向量 深度学习 机器学习 数学 贝叶斯概率 语言学 统计 哲学
作者
Meng Zhou,Zhe Xu,Kang Zhou,Kai-Yu Tong
出处
期刊:Lecture Notes in Computer Science 卷期号:: 137-147
标识
DOI:10.1007/978-3-031-43895-0_13
摘要

Deep learning-based segmentation typically requires a large amount of data with dense manual delineation, which is both time-consuming and expensive to obtain for medical images. Consequently, weakly supervised learning, which attempts to utilize sparse annotations such as scribbles for effective training, has garnered considerable attention. However, such scribble-supervision inherently lacks sufficient structural information, leading to two critical challenges: (i) while achieving good performance in overall overlap metrics such as Dice score, the existing methods struggle to perform satisfactory local prediction because no desired structural priors are accessible during training; (ii) the class feature distributions are inevitably less-compact due to sparse and extremely incomplete supervision, leading to poor generalizability. To address these, in this paper, we propose the SC-Net, a new scribble-supervised approach that combines Superpixel-guided scribble walking with Class-wise contrastive regularization. Specifically, the framework is built upon the recent dual-decoder backbone design, where predictions from two slightly different decoders are randomly mixed to provide auxiliary pseudo-label supervision. Besides the sparse and pseudo supervision, the scribbles walk towards unlabeled pixels guided by superpixel connectivity and image content to offer as much dense supervision as possible. Then, the class-wise contrastive regularization disconnects the feature manifolds of different classes to encourage the compactness of class feature distributions. We evaluate our approach on the public cardiac dataset ACDC and demonstrate the superiority of our method compared to recent scribble-supervised and semi-supervised learning methods with similar labeling efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王梓磬发布了新的文献求助10
刚刚
刚刚
孙帅发布了新的文献求助10
1秒前
1秒前
慧子完成签到,获得积分10
2秒前
小~杰完成签到,获得积分10
2秒前
沈ff发布了新的文献求助10
3秒前
大模型应助!!采纳,获得10
5秒前
Miaochen发布了新的文献求助10
5秒前
flyfish完成签到 ,获得积分10
7秒前
求是完成签到,获得积分10
7秒前
优雅小橘子完成签到 ,获得积分10
7秒前
8秒前
bqin发布了新的文献求助10
8秒前
zaafbb发布了新的文献求助30
8秒前
ma完成签到,获得积分10
9秒前
czy完成签到,获得积分10
10秒前
一生低首向东坡完成签到,获得积分10
11秒前
11秒前
12秒前
鸣蜩阿六完成签到,获得积分10
12秒前
Miaochen完成签到,获得积分10
12秒前
yangling0124完成签到,获得积分10
13秒前
13秒前
专注的开山完成签到 ,获得积分10
14秒前
15秒前
鲲鹏发布了新的文献求助10
15秒前
16秒前
16秒前
852应助Tao采纳,获得10
18秒前
香蕉觅云应助清爽花卷采纳,获得10
18秒前
李爱国应助端庄的白风采纳,获得10
20秒前
lixiangrui110完成签到,获得积分10
20秒前
小白完成签到,获得积分10
21秒前
chenlin应助乐乐采纳,获得10
21秒前
lsq108发布了新的文献求助10
22秒前
23秒前
搜集达人应助李子采纳,获得10
26秒前
26秒前
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068