Neural Cognitive Diagnosis Based on the Relationship Between Mining Exercise and Concept

计算机科学 认知 人工神经网络 人工智能 机器学习 知识管理 心理学 神经科学
作者
J. B. Jiao,Yi Tian,LiKun Huang,Quan Wang,Jiao Chen
标识
DOI:10.1109/aicit59054.2023.10277788
摘要

In the education system, cognitive diagnosis aims to assess students' cognitive abilities, providing a basis for personalized learning. In previous cognitive diagnosis models, the quantitative relationship between exercise and knowledge concepts and the interactions between knowledge concepts were often overlooked. In this paper, we propose a neural cognitive diagnosis model based on the quantitative relationship between exercise and knowledge concepts and the interactions between knowledge concepts, called QI-NeuralCDM. This model is trained to obtaining the quantitative relationship between exercise and knowledge concepts and introduces interactions between knowledge concepts to uncover the connections between exercise and knowledge concepts. Then, students are mapped to a knowledge proficiency vector, and a neural network is used to learn their interactions, predicting students' performance on exercises. Finally, we compare QI-NeuralCDM with previous models such as MIRT, DINA, NCDM, and CDGK on the ASSIST0910, ASSIST2017, and JunYi datasets. Experimental results demonstrate that QI-NeuralCDM shows excellent performance in predicting student performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫如冰完成签到,获得积分10
刚刚
llll完成签到,获得积分10
刚刚
史迪仔完成签到,获得积分10
1秒前
1秒前
nuyoahmay完成签到 ,获得积分10
1秒前
包容友儿完成签到,获得积分10
1秒前
无敌大忽悠完成签到,获得积分10
1秒前
英俊的铭应助Joy采纳,获得10
1秒前
鱼啊鱼完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
Kss完成签到,获得积分10
5秒前
5秒前
务实的小虾米完成签到,获得积分10
6秒前
小恐龙飞飞完成签到 ,获得积分10
6秒前
6秒前
MR_Z完成签到,获得积分10
7秒前
nothing完成签到,获得积分10
8秒前
小二郎应助小汪同学采纳,获得10
8秒前
小鹿发布了新的文献求助10
8秒前
Lemon应助WHY采纳,获得10
8秒前
10秒前
白水发布了新的文献求助10
10秒前
suiwuya完成签到,获得积分10
10秒前
研友_ZGAeoL发布了新的文献求助10
11秒前
11秒前
jue完成签到,获得积分10
12秒前
zengyiyong完成签到,获得积分10
12秒前
12秒前
小菜狗完成签到,获得积分10
12秒前
yjy完成签到,获得积分10
13秒前
纯真雁菱完成签到,获得积分10
13秒前
13秒前
orixero应助ppg123采纳,获得10
13秒前
神仙也抠脚丫完成签到,获得积分10
13秒前
宫宛儿完成签到,获得积分10
13秒前
14秒前
14秒前
Fly完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311586
求助须知:如何正确求助?哪些是违规求助? 2944410
关于积分的说明 8518837
捐赠科研通 2619769
什么是DOI,文献DOI怎么找? 1432582
科研通“疑难数据库(出版商)”最低求助积分说明 664704
邀请新用户注册赠送积分活动 649969