Evaluation of irreducible water saturation by electrical imaging logging based on capillary pressure approximation theory

毛细管压力 登录中 饱和(图论) 石油工程 测井 电阻率和电导率 拐点 油藏 土壤科学 近似误差 多孔性 多孔介质 地质学 岩土工程 数学 物理 统计 几何学 组合数学 生物 量子力学 生态学
作者
Yao Li,Zhansong Zhang,Song Hu,Xueqing Zhou,Jianhong Guo,Linqi Zhu
标识
DOI:10.1016/j.geoen.2023.211592
摘要

One of the most important metrics for evaluating oil and gas reservoirs is irreducible water saturation (Swir). The completion of oil and gas reservoir development tasks, such as fluid identification, productivity prediction, and water-flooded reservoir discrimination, requires the accurate evaluation of Swir. Nuclear magnetic resonance (NMR) logging can reflect the intricate pore structure of reservoirs, so it offers a natural advantage in the evaluation of Swir, but its high measurement cost leads to infrequent use. In geophysical logging, electrical imaging logging can obtain pore size distribution information at a lower cost. Hence, a method based on electrical imaging logging data is proposed to predict Swir. This method not only has a high degree of accuracy but is also cost-effective. First, the pore characteristics of the bound fluid were analyzed with the mercury injection capillary pressure curve. Based on the capillary pressure approximation theory, the reverse cumulative curve of the porosity spectrum was derived. And the physical meaning of its "inflection point" was clarified. Then, the resistivity of the formation containing just irreducible water was computed using the conversion between the core displacement pressure and resistivity. Finally, based on Archie's formula, the Swir at each depth of the reservoir was predicted. By using ultradeep carbonate reservoir logging data from the Yuanba gas field, the model was validated. The results demonstrated that the calculated values using this method agreed with the measured values from the cores. Compared with the core fitting method, the average absolute error is reduced by 2.61%, and the average relative error decreases by 12.0%. If NMR logging information is not present, this method serves as an effective supplement to accurately predict Swir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyanwxy发布了新的文献求助10
1秒前
1秒前
搜集达人应助WTF采纳,获得10
2秒前
Ava应助陆靖易采纳,获得10
2秒前
daishuheng完成签到 ,获得积分10
3秒前
OJL完成签到 ,获得积分10
4秒前
郑思榆完成签到 ,获得积分10
4秒前
wan完成签到 ,获得积分10
5秒前
cheney完成签到,获得积分10
6秒前
周周好运完成签到,获得积分10
6秒前
温言发布了新的文献求助20
8秒前
Rahul完成签到,获得积分10
8秒前
默默的豆芽完成签到,获得积分10
8秒前
wangyanwxy完成签到,获得积分10
9秒前
flymove完成签到,获得积分10
9秒前
科研通AI5应助平淡南霜采纳,获得10
11秒前
wanci应助小小爱吃百香果采纳,获得10
11秒前
12秒前
12秒前
12秒前
14秒前
我是站长才怪应助xg采纳,获得10
14秒前
decimalpoint完成签到 ,获得积分10
16秒前
Benliu发布了新的文献求助20
16秒前
16秒前
Carol完成签到,获得积分10
16秒前
sw98318发布了新的文献求助10
17秒前
wang1090完成签到,获得积分10
17秒前
奋斗的许婷2完成签到,获得积分10
17秒前
17秒前
18秒前
hll完成签到,获得积分20
18秒前
阳yang发布了新的文献求助10
18秒前
19秒前
wang1090发布了新的文献求助30
20秒前
呜呜呜呜完成签到,获得积分10
20秒前
20秒前
Riki发布了新的文献求助10
21秒前
88发布了新的文献求助10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808