Evaluation of irreducible water saturation by electrical imaging logging based on capillary pressure approximation theory

毛细管压力 登录中 饱和(图论) 石油工程 测井 电阻率和电导率 拐点 油藏 土壤科学 近似误差 多孔性 多孔介质 地质学 岩土工程 数学 物理 统计 几何学 生态学 组合数学 量子力学 生物
作者
Yao Li,Zhansong Zhang,Song Hu,Xueqing Zhou,Jianhong Guo,Linqi Zhu
标识
DOI:10.1016/j.geoen.2023.211592
摘要

One of the most important metrics for evaluating oil and gas reservoirs is irreducible water saturation (Swir). The completion of oil and gas reservoir development tasks, such as fluid identification, productivity prediction, and water-flooded reservoir discrimination, requires the accurate evaluation of Swir. Nuclear magnetic resonance (NMR) logging can reflect the intricate pore structure of reservoirs, so it offers a natural advantage in the evaluation of Swir, but its high measurement cost leads to infrequent use. In geophysical logging, electrical imaging logging can obtain pore size distribution information at a lower cost. Hence, a method based on electrical imaging logging data is proposed to predict Swir. This method not only has a high degree of accuracy but is also cost-effective. First, the pore characteristics of the bound fluid were analyzed with the mercury injection capillary pressure curve. Based on the capillary pressure approximation theory, the reverse cumulative curve of the porosity spectrum was derived. And the physical meaning of its "inflection point" was clarified. Then, the resistivity of the formation containing just irreducible water was computed using the conversion between the core displacement pressure and resistivity. Finally, based on Archie's formula, the Swir at each depth of the reservoir was predicted. By using ultradeep carbonate reservoir logging data from the Yuanba gas field, the model was validated. The results demonstrated that the calculated values using this method agreed with the measured values from the cores. Compared with the core fitting method, the average absolute error is reduced by 2.61%, and the average relative error decreases by 12.0%. If NMR logging information is not present, this method serves as an effective supplement to accurately predict Swir.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学海无涯苦作舟完成签到,获得积分10
1秒前
烟花应助善擦善擦Scccc采纳,获得10
1秒前
可咳咳咳发布了新的文献求助10
1秒前
善学以致用应助fhxwz采纳,获得10
1秒前
细心的小鸽子完成签到,获得积分10
1秒前
在水一方应助阿凉采纳,获得10
2秒前
3秒前
英姑应助让地球种满香菜采纳,获得10
3秒前
HanaTerbush给健壮诗桃的求助进行了留言
3秒前
4秒前
11231发布了新的文献求助10
5秒前
wzh发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
星星boy完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
温柔的星月完成签到 ,获得积分10
7秒前
可咳咳咳完成签到,获得积分10
7秒前
小二郎应助jinhaisong采纳,获得10
7秒前
Solitude_Z完成签到,获得积分10
8秒前
科研通AI6.1应助虚幻德地采纳,获得10
8秒前
脑洞疼应助287采纳,获得10
8秒前
8秒前
9秒前
风中松鼠完成签到 ,获得积分10
9秒前
9秒前
端庄的以寒完成签到,获得积分10
10秒前
赘婿应助hdbys采纳,获得10
10秒前
YSY发布了新的文献求助200
10秒前
Solitude_Z发布了新的文献求助10
10秒前
wongcheng完成签到,获得积分10
11秒前
传奇3应助Carpe采纳,获得10
11秒前
12秒前
李爱国应助随风采纳,获得10
12秒前
13秒前
13秒前
13秒前
Arrebol完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771037
求助须知:如何正确求助?哪些是违规求助? 5589257
关于积分的说明 15426419
捐赠科研通 4904429
什么是DOI,文献DOI怎么找? 2638747
邀请新用户注册赠送积分活动 1586546
关于科研通互助平台的介绍 1541706