Evaluation of irreducible water saturation by electrical imaging logging based on capillary pressure approximation theory

毛细管压力 登录中 饱和(图论) 石油工程 测井 电阻率和电导率 拐点 油藏 土壤科学 近似误差 多孔性 多孔介质 地质学 岩土工程 数学 物理 统计 几何学 生态学 组合数学 量子力学 生物
作者
Yao Li,Zhansong Zhang,Song Hu,Xueqing Zhou,Jianhong Guo,Linqi Zhu
标识
DOI:10.1016/j.geoen.2023.211592
摘要

One of the most important metrics for evaluating oil and gas reservoirs is irreducible water saturation (Swir). The completion of oil and gas reservoir development tasks, such as fluid identification, productivity prediction, and water-flooded reservoir discrimination, requires the accurate evaluation of Swir. Nuclear magnetic resonance (NMR) logging can reflect the intricate pore structure of reservoirs, so it offers a natural advantage in the evaluation of Swir, but its high measurement cost leads to infrequent use. In geophysical logging, electrical imaging logging can obtain pore size distribution information at a lower cost. Hence, a method based on electrical imaging logging data is proposed to predict Swir. This method not only has a high degree of accuracy but is also cost-effective. First, the pore characteristics of the bound fluid were analyzed with the mercury injection capillary pressure curve. Based on the capillary pressure approximation theory, the reverse cumulative curve of the porosity spectrum was derived. And the physical meaning of its "inflection point" was clarified. Then, the resistivity of the formation containing just irreducible water was computed using the conversion between the core displacement pressure and resistivity. Finally, based on Archie's formula, the Swir at each depth of the reservoir was predicted. By using ultradeep carbonate reservoir logging data from the Yuanba gas field, the model was validated. The results demonstrated that the calculated values using this method agreed with the measured values from the cores. Compared with the core fitting method, the average absolute error is reduced by 2.61%, and the average relative error decreases by 12.0%. If NMR logging information is not present, this method serves as an effective supplement to accurately predict Swir.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Unicorn采纳,获得10
1秒前
深海蓝鱼发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
哈基米完成签到 ,获得积分10
4秒前
4秒前
赘婿应助大大小小采纳,获得10
5秒前
5秒前
GHN完成签到,获得积分10
6秒前
6秒前
6秒前
kin发布了新的文献求助10
6秒前
maker完成签到,获得积分10
7秒前
小刘医生完成签到,获得积分10
7秒前
7秒前
8秒前
Colin_Chen完成签到,获得积分10
8秒前
9秒前
Akim应助GZ采纳,获得10
9秒前
9秒前
贪玩笑容发布了新的文献求助10
9秒前
天天快乐应助Kelly采纳,获得10
9秒前
ZZ完成签到,获得积分10
10秒前
10秒前
Unicorn完成签到,获得积分20
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
加壹完成签到 ,获得积分10
11秒前
12秒前
13秒前
trayheep发布了新的文献求助10
14秒前
汤远山发布了新的文献求助10
15秒前
Rando发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596