Evaluation of irreducible water saturation by electrical imaging logging based on capillary pressure approximation theory

毛细管压力 登录中 饱和(图论) 石油工程 测井 电阻率和电导率 拐点 油藏 土壤科学 近似误差 多孔性 多孔介质 地质学 岩土工程 数学 物理 统计 几何学 生态学 组合数学 量子力学 生物
作者
Yao Li,Zhansong Zhang,Song Hu,Xueqing Zhou,Jianhong Guo,Linqi Zhu
标识
DOI:10.1016/j.geoen.2023.211592
摘要

One of the most important metrics for evaluating oil and gas reservoirs is irreducible water saturation (Swir). The completion of oil and gas reservoir development tasks, such as fluid identification, productivity prediction, and water-flooded reservoir discrimination, requires the accurate evaluation of Swir. Nuclear magnetic resonance (NMR) logging can reflect the intricate pore structure of reservoirs, so it offers a natural advantage in the evaluation of Swir, but its high measurement cost leads to infrequent use. In geophysical logging, electrical imaging logging can obtain pore size distribution information at a lower cost. Hence, a method based on electrical imaging logging data is proposed to predict Swir. This method not only has a high degree of accuracy but is also cost-effective. First, the pore characteristics of the bound fluid were analyzed with the mercury injection capillary pressure curve. Based on the capillary pressure approximation theory, the reverse cumulative curve of the porosity spectrum was derived. And the physical meaning of its "inflection point" was clarified. Then, the resistivity of the formation containing just irreducible water was computed using the conversion between the core displacement pressure and resistivity. Finally, based on Archie's formula, the Swir at each depth of the reservoir was predicted. By using ultradeep carbonate reservoir logging data from the Yuanba gas field, the model was validated. The results demonstrated that the calculated values using this method agreed with the measured values from the cores. Compared with the core fitting method, the average absolute error is reduced by 2.61%, and the average relative error decreases by 12.0%. If NMR logging information is not present, this method serves as an effective supplement to accurately predict Swir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
刚刚
xzy998应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
HCLonely应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
子车茗应助科研通管家采纳,获得20
1秒前
Owen应助科研通管家采纳,获得10
1秒前
ksr8888应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
tramp应助shenzhou9采纳,获得10
1秒前
王梓磬完成签到,获得积分10
3秒前
Topofme完成签到,获得积分10
4秒前
隐形曼青应助执着的冰绿采纳,获得10
5秒前
柯梦完成签到,获得积分10
8秒前
10秒前
红丽阿妹完成签到,获得积分10
15秒前
照照完成签到,获得积分10
15秒前
Django发布了新的文献求助10
16秒前
bkagyin应助Jalynn采纳,获得10
16秒前
17秒前
17秒前
我是学霸我是王完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
啦啦啦发布了新的文献求助10
20秒前
脑洞疼应助星星采纳,获得10
20秒前
24秒前
26秒前
可乐应助陈时懿采纳,获得10
26秒前
27秒前
28秒前
ShuV完成签到,获得积分20
28秒前
29秒前
郭亚楠完成签到,获得积分10
31秒前
zzz发布了新的文献求助10
31秒前
星星发布了新的文献求助10
32秒前
你好呀完成签到,获得积分20
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313711
求助须知:如何正确求助?哪些是违规求助? 2946043
关于积分的说明 8528118
捐赠科研通 2621632
什么是DOI,文献DOI怎么找? 1433987
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650651