Evaluation of irreducible water saturation by electrical imaging logging based on capillary pressure approximation theory

毛细管压力 登录中 饱和(图论) 石油工程 测井 电阻率和电导率 拐点 油藏 土壤科学 近似误差 多孔性 多孔介质 地质学 岩土工程 数学 物理 统计 几何学 生态学 组合数学 量子力学 生物
作者
Yao Li,Zhansong Zhang,Song Hu,Xueqing Zhou,Jianhong Guo,Linqi Zhu
标识
DOI:10.1016/j.geoen.2023.211592
摘要

One of the most important metrics for evaluating oil and gas reservoirs is irreducible water saturation (Swir). The completion of oil and gas reservoir development tasks, such as fluid identification, productivity prediction, and water-flooded reservoir discrimination, requires the accurate evaluation of Swir. Nuclear magnetic resonance (NMR) logging can reflect the intricate pore structure of reservoirs, so it offers a natural advantage in the evaluation of Swir, but its high measurement cost leads to infrequent use. In geophysical logging, electrical imaging logging can obtain pore size distribution information at a lower cost. Hence, a method based on electrical imaging logging data is proposed to predict Swir. This method not only has a high degree of accuracy but is also cost-effective. First, the pore characteristics of the bound fluid were analyzed with the mercury injection capillary pressure curve. Based on the capillary pressure approximation theory, the reverse cumulative curve of the porosity spectrum was derived. And the physical meaning of its "inflection point" was clarified. Then, the resistivity of the formation containing just irreducible water was computed using the conversion between the core displacement pressure and resistivity. Finally, based on Archie's formula, the Swir at each depth of the reservoir was predicted. By using ultradeep carbonate reservoir logging data from the Yuanba gas field, the model was validated. The results demonstrated that the calculated values using this method agreed with the measured values from the cores. Compared with the core fitting method, the average absolute error is reduced by 2.61%, and the average relative error decreases by 12.0%. If NMR logging information is not present, this method serves as an effective supplement to accurately predict Swir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得20
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
古猫宁完成签到,获得积分10
刚刚
刚刚
orixero应助科研通管家采纳,获得10
刚刚
11112233完成签到,获得积分10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
赘婿应助HL采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得150
刚刚
今后应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
fuuu完成签到,获得积分20
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
zhb发布了新的文献求助10
1秒前
jiejie完成签到,获得积分10
2秒前
大模型应助123333采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
小露发布了新的文献求助10
4秒前
陈纸溪完成签到 ,获得积分10
4秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125