Continual Image Deraining With Hypergraph Convolutional Networks

计算机科学 适应性 人工智能 遗忘 过程(计算) 构造(python库) 概化理论 任务(项目管理) 模式识别(心理学) 机器学习 卷积神经网络 过度拟合 图像(数学) 理论(学习稳定性) 一般化 人工神经网络 数学 生态学 数学分析 语言学 哲学 统计 管理 经济 生物 程序设计语言 操作系统
作者
Xueyang Fu,Jie Xiao,Yurui Zhu,Aiping Liu,Feng Wu,Zheng-Jun Zha
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (8): 9534-9551 被引量:28
标识
DOI:10.1109/tpami.2023.3241756
摘要

Image deraining is a challenging task since rain streaks have the characteristics of a spatially long structure and have a complex diversity. Existing deep learning-based methods mainly construct the deraining networks by stacking vanilla convolutional layers with local relations, and can only handle a single dataset due to catastrophic forgetting, resulting in a limited performance and insufficient adaptability. To address these issues, we propose a new image deraining framework to effectively explore nonlocal similarity, and to continuously learn on multiple datasets. Specifically, we first design a patchwise hypergraph convolutional module, which aims to better extract the nonlocal properties with higher-order constraints on the data, to construct a new backbone and to improve the deraining performance. Then, to achieve better generalizability and adaptability in real-world scenarios, we propose a biological brain-inspired continual learning algorithm. By imitating the plasticity mechanism of brain synapses during the learning and memory process, our continual learning process allows the network to achieve a subtle stability-plasticity tradeoff. This it can effectively alleviate catastrophic forgetting and enables a single network to handle multiple datasets. Compared with the competitors, our new deraining network with unified parameters attains a state-of-the-art performance on seen synthetic datasets and has a significantly improved generalizability on unseen real rainy images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助cc采纳,获得10
刚刚
1秒前
宁静致远完成签到,获得积分10
1秒前
bkagyin应助AJIN采纳,获得10
1秒前
英俊的铭应助noteasy采纳,获得10
1秒前
Owen应助IVY采纳,获得10
2秒前
八戒爱吃人参果完成签到,获得积分10
2秒前
FashionBoy应助yuyu采纳,获得10
2秒前
Nellzson发布了新的文献求助10
2秒前
GAS完成签到,获得积分10
2秒前
2秒前
开心超人发布了新的文献求助10
2秒前
3秒前
Tmac完成签到,获得积分10
3秒前
粗暴的遥完成签到,获得积分10
3秒前
万能图书馆应助xiaomi采纳,获得10
4秒前
AGuang应助奇奇淼采纳,获得10
4秒前
5秒前
淡淡晓夏发布了新的文献求助10
5秒前
5秒前
魔王完成签到,获得积分10
5秒前
6秒前
6秒前
阳光万声完成签到,获得积分10
7秒前
fusheng发布了新的文献求助10
7秒前
阳光项链完成签到,获得积分10
7秒前
奶冻完成签到,获得积分10
7秒前
Tmac发布了新的文献求助10
8秒前
邓佳鑫Alan应助lvshuye采纳,获得10
8秒前
8秒前
9秒前
wayne完成签到,获得积分10
9秒前
9秒前
10秒前
情怀应助abcdefg采纳,获得10
10秒前
星辰发布了新的文献求助50
10秒前
酷波er应助开心超人采纳,获得10
10秒前
Kristina完成签到,获得积分10
11秒前
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306