Subject-Invariant Deep Neural Networks based on Baseline Correction for EEG Motor Imagery BCI

脑-机接口 脑电图 运动表象 计算机科学 不变(物理) 人工智能 模式识别(心理学) 语音识别 人工神经网络 数学 心理学 神经科学 数学物理
作者
Youngchul Kwak,Kyeongbo Kong,Woo‐Jin Song,Seong-Eun Kim
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1801-1812 被引量:1
标识
DOI:10.1109/jbhi.2023.3238421
摘要

Electroencephalography (EEG)-based brain-computer interface (BCI) systems have been extensively used in various applications, such as communication, control, and rehabilitation. However, individual anatomical and physiological differences cause subject-specific variability of EEG signals for the same task, and BCI systems thus require a calibration procedure that adjusts system parameters to each subject. To overcome this problem, we propose a subject-invariant deep neural network (DNN) using baseline-EEG signals that can be recorded from subjects resting in comfortable states. We first modeled the deep features of EEG signals as a decomposition of subject-invariant and subject-variant features corrupted by anatomical/physiological characteristics. Subject-variant features were then removed from the deep features by learning the network with a baseline correction module (BCM) using the underlying individual information in baseline-EEG signals. The subject-invariant loss forces the BCM to assemble subject-invariant features that have the same class, irrespective of the subject. Using 1-min baseline-EEG signals of the new subject, our algorithm can eliminate subject-variant components from test data without the calibration process. The experimental results show that our subject-invariant DNN framework significantly increases decoding accuracies of the conventional DNN methods for BCI systems. Furthermore, feature visualizations illustrate that the proposed BCM extracts subject-invariant features that are close to each other in the same class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助愉快的楷瑞采纳,获得10
1秒前
科研通AI6应助小绵羊采纳,获得10
1秒前
1秒前
1秒前
Ava应助868采纳,获得10
1秒前
一叶舟完成签到 ,获得积分10
2秒前
xiaozhou完成签到,获得积分10
2秒前
2秒前
受伤的依霜完成签到,获得积分20
2秒前
小王同学完成签到,获得积分10
2秒前
2秒前
lyreruin完成签到,获得积分10
2秒前
虚影完成签到,获得积分10
3秒前
林祥胜完成签到,获得积分10
3秒前
敏感代云完成签到,获得积分10
3秒前
3秒前
科研通AI5应助bbb采纳,获得10
3秒前
3秒前
瑾风阳完成签到,获得积分10
4秒前
琪哒发布了新的文献求助10
4秒前
225455完成签到,获得积分10
4秒前
4秒前
沉默发布了新的文献求助10
4秒前
爆米花应助英勇的面包采纳,获得10
4秒前
4秒前
Hover发布了新的文献求助10
4秒前
烟花应助jyyg采纳,获得10
5秒前
慕青应助Russula_Chu采纳,获得10
6秒前
隐形曼青应助梅哈采纳,获得10
6秒前
居正完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
xiaoran发布了新的文献求助10
6秒前
7秒前
机灵安白发布了新的文献求助10
7秒前
晨风韵雨完成签到,获得积分20
7秒前
夏侯初发布了新的文献求助10
8秒前
8秒前
淡定发布了新的文献求助30
8秒前
Iris发布了新的文献求助20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426