脑-机接口
脑电图
运动表象
计算机科学
不变(物理)
人工智能
模式识别(心理学)
语音识别
人工神经网络
数学
心理学
神经科学
数学物理
作者
Youngchul Kwak,Kyeongbo Kong,Woo‐Jin Song,Seong-Eun Kim
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2023-04-01
卷期号:27 (4): 1801-1812
被引量:1
标识
DOI:10.1109/jbhi.2023.3238421
摘要
Electroencephalography (EEG)-based brain-computer interface (BCI) systems have been extensively used in various applications, such as communication, control, and rehabilitation. However, individual anatomical and physiological differences cause subject-specific variability of EEG signals for the same task, and BCI systems thus require a calibration procedure that adjusts system parameters to each subject. To overcome this problem, we propose a subject-invariant deep neural network (DNN) using baseline-EEG signals that can be recorded from subjects resting in comfortable states. We first modeled the deep features of EEG signals as a decomposition of subject-invariant and subject-variant features corrupted by anatomical/physiological characteristics. Subject-variant features were then removed from the deep features by learning the network with a baseline correction module (BCM) using the underlying individual information in baseline-EEG signals. The subject-invariant loss forces the BCM to assemble subject-invariant features that have the same class, irrespective of the subject. Using 1-min baseline-EEG signals of the new subject, our algorithm can eliminate subject-variant components from test data without the calibration process. The experimental results show that our subject-invariant DNN framework significantly increases decoding accuracies of the conventional DNN methods for BCI systems. Furthermore, feature visualizations illustrate that the proposed BCM extracts subject-invariant features that are close to each other in the same class.
科研通智能强力驱动
Strongly Powered by AbleSci AI