Estimation of individual stem volume and diameter from segmented UAV laser scanning datasets in Pinus taeda L. plantations

胸径 激光扫描 均方误差 随机森林 树(集合论) 竞赛(生物学) 林业 松属 统计 森林健康 播种 遥感 体积热力学 数学 估计 环境科学 计算机科学 地理 生态学 激光器 农学 植物 生物 物理 机器学习 光学 数学分析 经济 量子力学 管理
作者
Matthew J. Sumnall,Timothy J. Albaugh,David R. Carter,Rachel L. Cook,W. Cully Hession,Otávio Camargo Campoe,Rafael Rubilar,Randolph H. Wynne,Valerie A. Thomas
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (1): 217-247 被引量:7
标识
DOI:10.1080/01431161.2022.2161853
摘要

The competitive neighbourhood surrounding an individual tree can have a significant influence on its diameter at breast height (DBH) and individual tree stem volume (SV). Distance dependent competition index metrics are rarely recorded in traditional field campaigns because they are laborious to collect and are spatially limited. Remote sensing data could overcome these limitations while providing estimation of forest attributes over a large area. We used unoccupied aerial vehicle laser scanning data to delineate individual tree crowns (ITCs) and calculated crown size and distance-dependent competition indices to estimate DBH and SV. We contrasted two methods: (i) Random Forest (RF) and (ii) backwards-stepwise, linear multiple regression (LMR). We utilized an existing experiment in Pinus taeda L. plantations including multiple planting densities, genotypes and silvicultural levels. While the tree planting density did affect the correct delineation of ITCs, between 61% and 99% (mean 86%) were correctly linked to the planting location. The most accurate RF and LMR models all included metrics related to ITC size and competitive neighbourhood. The DBH estimates from RF and LMR were similar: RMSE 3.05 and 3.13 cm (R2 0.64 and 0.62), respectively. Estimates of SV from RF were slightly better than for LMR: RMSE 0.06 and 0.07 m3 (R2 0.77 and 0.70), respectively. Our results provide evidence that ITC size and competition index metrics may improve DBH and SV estimation accuracy when analysing laser-scanning data. The ability to provide accurate, and near-complete, forest inventories holds a great deal of potential for forest management planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助缘起缘灭采纳,获得10
刚刚
Guo完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
白衣修身发布了新的文献求助10
刚刚
向阳生长完成签到,获得积分10
1秒前
蝉蝉完成签到,获得积分10
2秒前
AAA关闭了AAA文献求助
3秒前
hyg完成签到,获得积分20
3秒前
穆仰发布了新的文献求助30
3秒前
哦1完成签到,获得积分10
3秒前
爽歪歪发布了新的文献求助10
3秒前
3秒前
豆包完成签到,获得积分10
3秒前
4秒前
了0完成签到 ,获得积分10
4秒前
七七完成签到 ,获得积分10
4秒前
5秒前
orixero应助科研小奶狗采纳,获得10
5秒前
zxx完成签到 ,获得积分0
5秒前
无限荆完成签到 ,获得积分10
6秒前
6秒前
7秒前
丘比特应助顺心纸鹤采纳,获得10
7秒前
7秒前
三七四十三完成签到,获得积分10
7秒前
y1j完成签到,获得积分10
8秒前
plz94完成签到 ,获得积分10
8秒前
酷酷的友易完成签到,获得积分10
8秒前
8秒前
甜美的月饼完成签到,获得积分10
8秒前
小菜白发布了新的文献求助10
9秒前
Beacon发布了新的文献求助10
9秒前
虚心的唯雪完成签到,获得积分10
9秒前
诗梦完成签到,获得积分10
10秒前
bkagyin应助xkcat采纳,获得10
10秒前
一直完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
qingmoheng应助悦耳怜珊采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516775
求助须知:如何正确求助?哪些是违规求助? 4609657
关于积分的说明 14517657
捐赠科研通 4546551
什么是DOI,文献DOI怎么找? 2491236
邀请新用户注册赠送积分活动 1472956
关于科研通互助平台的介绍 1444911