MFFN: Multi-view Feature Fusion Network for Camouflaged Object Detection

计算机科学 杠杆(统计) 人工智能 目标检测 特征(语言学) 计算机视觉 编码(集合论) 对象(语法) 探测器 利用 源代码 频道(广播) 模式识别(心理学) 操作系统 哲学 电信 集合(抽象数据类型) 程序设计语言 语言学 计算机安全 计算机网络
作者
Dehua Zheng,Xiaochen Zheng,Laurence T. Yang,Yuan Gao,Chenlu Zhu,Yiheng Ruan
标识
DOI:10.1109/wacv56688.2023.00617
摘要

Recent research about camouflaged object detection (COD) aims to segment highly concealed objects hidden in complex surroundings. The tiny, fuzzy camouflaged objects result in visually indistinguishable properties. However, current single-view COD detectors are sensitive to background distractors. Therefore, blurred boundaries and variable shapes of the camouflaged objects are challenging to be fully captured with a singleview detector. To overcome these obstacles, we propose a behavior-inspired framework, called Multi-view Feature Fusion Network (MFFN), which mimics the human behaviors of finding indistinct objects in images, i.e., observing from multiple angles, distances, perspectives. Specifically, the key idea behind it is to generate multiple ways of observation (multi-view) by data augmentation and apply them as inputs. MFFN captures critical boundary and semantic information by comparing and fusing extracted multi-view features. In addition, our MFFN exploits the dependence and interaction between views and channels. Specifically, our methods leverage the complementary information between different views through a two-stage attention module called Co-attention of Multi-view (CAMV). And we design a local-overall module called Channel Fusion Unit (CFU) to explore the channel-wise contextual clues of diverse feature maps in an iterative manner. The experiment results show that our method performs favorably against existing state-of-the-art methods via training with the same data. The code will be available at https://github.com/dwardzheng/MFFN_COD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luckysame发布了新的文献求助10
刚刚
刚刚
你的发布了新的文献求助10
刚刚
刚刚
一壶古酒完成签到,获得积分10
1秒前
Hello应助黄晟钊采纳,获得10
1秒前
透明的木头完成签到,获得积分10
1秒前
1秒前
天天快乐应助热情芷荷采纳,获得10
1秒前
Vanilla应助玲℃采纳,获得20
1秒前
1秒前
2秒前
852应助张泽华采纳,获得10
2秒前
2秒前
今天开心吗完成签到 ,获得积分10
2秒前
cyrexssol完成签到 ,获得积分10
2秒前
lq发布了新的文献求助10
2秒前
上官若男应助嗜血啊阳采纳,获得10
2秒前
GJJJJJJJ应助大甜瓜采纳,获得50
2秒前
3秒前
3秒前
杜松子完成签到,获得积分10
3秒前
3秒前
熏同学发布了新的文献求助10
4秒前
科研通AI5应助早日发论文采纳,获得10
4秒前
科研通AI5应助早日发论文采纳,获得10
4秒前
123456666发布了新的文献求助10
4秒前
浅味书香完成签到,获得积分20
4秒前
hanzhua132完成签到,获得积分10
4秒前
付威威完成签到,获得积分10
4秒前
科研通AI6应助xrt采纳,获得10
4秒前
努力努力完成签到,获得积分10
4秒前
Jackey1ov3发布了新的文献求助10
4秒前
lkc发布了新的文献求助30
5秒前
所所应助splemeth采纳,获得10
5秒前
田様应助lzy303886采纳,获得10
5秒前
这是个胖子完成签到,获得积分10
5秒前
刘家鹏发布了新的文献求助10
5秒前
myduty发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068023
求助须知:如何正确求助?哪些是违规求助? 4289750
关于积分的说明 13365025
捐赠科研通 4109504
什么是DOI,文献DOI怎么找? 2250387
邀请新用户注册赠送积分活动 1255727
关于科研通互助平台的介绍 1188244