Parallel incremental association rule mining framework for public opinion analysis

关联规则学习 计算机科学 合并(版本控制) 数据挖掘 数据库事务 情绪分析 舆论 互联网 亲和力分析 大数据 过程(计算) 情报检索 数据库 机器学习 万维网 操作系统 政治 政治学 法学
作者
Yingjie Song,Yang Li,Yaohua Wang,Xiong Xiao,Sheng You,Zhuo Tang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:630: 523-545 被引量:9
标识
DOI:10.1016/j.ins.2023.02.034
摘要

Internet public opinion association rule mining (POARM) has garnered significant attention from a larger group of netizens. However, most POARM methods have been applied to post-event analysis, which has poor timeliness and a low efficiency. Therefore, the real-time monitoring of public opinion association rules is lacking. To address this problem, we propose the parallel Incremental POARM Framework (IPOARM), which improves the timeliness of association rule mining in two ways: 1) using an incremental merge method to consider both inserted and deleted public opinion transaction sets and reuse previous frequent itemsets to reduce redundant computation and 2) employing a parallel implementation of big data process platforms. Moreover, the flexible association rule mining (ARM) algorithm selection structure of IPOARM enables users to freely select suitable ARM algorithms. We represent four classic transaction sets as public opinion transaction sets and compare the IPOARM framework with two novel incremental association rules mining algorithms. Our evaluations indicate that the IPOARM framework can discover Internet public opinion association rules quickly, implying that it can be easily integrated into existing big data processing platforms and that it significantly improves the mining accuracy and efficiency by 12.756% and 29.371%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辰寒云阳完成签到,获得积分10
刚刚
1秒前
yuky完成签到 ,获得积分10
1秒前
丘比特应助liuxiaoping采纳,获得10
1秒前
缓慢千易完成签到,获得积分10
1秒前
猪猪hero应助lwl666采纳,获得10
2秒前
漂亮的孤风完成签到,获得积分10
2秒前
8R60d8应助chenhunhun采纳,获得10
2秒前
脑洞疼应助noriZHC采纳,获得10
3秒前
张瑞彬完成签到,获得积分10
4秒前
莉莉发布了新的文献求助10
5秒前
可爱的函函应助颖w采纳,获得10
5秒前
勤恳的访梦完成签到,获得积分20
5秒前
大鱼大鱼完成签到,获得积分10
6秒前
www完成签到 ,获得积分10
6秒前
qsxy发布了新的文献求助10
6秒前
阔落发布了新的文献求助10
7秒前
zy0411完成签到,获得积分10
8秒前
8秒前
健康的雪发布了新的文献求助10
10秒前
lihn完成签到,获得积分10
11秒前
Nala应助恰逢采纳,获得10
11秒前
mix完成签到,获得积分10
11秒前
11秒前
果实发布了新的文献求助10
12秒前
12秒前
哎呀哎呀呀完成签到,获得积分10
12秒前
贝壳完成签到,获得积分10
12秒前
万能图书馆应助宫冷雁采纳,获得10
13秒前
14秒前
浩洁发布了新的文献求助10
14秒前
14秒前
赘婿应助xhh采纳,获得10
14秒前
可靠松完成签到,获得积分10
15秒前
SYLH应助高兴采文采纳,获得10
15秒前
爆米花应助guons采纳,获得10
15秒前
16秒前
西西完成签到,获得积分10
16秒前
糖淘淘发布了新的文献求助10
17秒前
科研通AI2S应助大牛采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128