Classification of acute ischemic stroke EEG signal using entropy-based features, wavelet decomposition, and machine learning algorithms

脑电图 朴素贝叶斯分类器 模式识别(心理学) 人工智能 熵(时间箭头) 决策树学习 磁共振成像 计算机科学 决策树 语音识别 医学 放射科 支持向量机 精神科 量子力学 物理
作者
Annisaa’ Fitri Nurfirdausi,Sastra Kusuma Wijaya,Prawito Prajitno,Nurhadi Ibrahim
出处
期刊:Nucleation and Atmospheric Aerosols 卷期号:2537: 050003-050003 被引量:5
标识
DOI:10.1063/5.0098733
摘要

Stroke is one of the most leading causes of death and disability in the world as well as in Indonesia. Almost 85% of stroke patients suffer from Acute Ischemic Stroke (AIS). They need to be early diagnosed to improve stroke treatment. The most common tools that have been widely used in diagnosing strokes are Computed Tomography Scans (CT Scans) and Magnetic Resonance Imaging (MRI). Electroencephalography (EEG) analysis has been widely studied in identifying stroke disease due to its relatively low cost and non-invasive characteristics. The study is aimed to classify the severity of AIS patients using EEG signals into four classes: normal, minor, moderate, and severe. This study was conducted in Rumah Sakit Pusat Otak Nasional (RSPON, National Brain Center Hospital), Jakarta, and acquired 32-channel EEG data recordings, CT-Scan images, and NIHSS scores. The total subject participated in this study was 57 subjects: 35 male subjects and 22 female subjects with age ranges 40 – 60 years old. Shannon Entropy (SE), and Log Energy feature-based EEG from alpha, beta, theta, delta, and gamma sub-bands were extracted and evaluated as the EEG signals are complex, non-stationary, and non-linear. These features were combined with Delta to Alpha Ratio (DAR) and Delta Theta to Alpha Beta Ratio (DTABR) that were extracted using wavelet decomposition. All of these features were proceeded using three different classifiers: k-Nearest Neighbors, Decision Tree, and Naïve Bayes classifier to compare their performances. Besides classifiers, we also used three different sets of features: All features; Shannon Entropy; Log Energy; Shannon Entropy, and Log Energy features as training inputs. The highest accuracy was yielded by Decision Tree using Shannon Entropy feature, which yields 83% accuracy. This system would be expected to be used widely in type-C hospitals in Indonesia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
公孙玲珑发布了新的文献求助10
1秒前
石头完成签到,获得积分10
1秒前
2秒前
田様应助haliw采纳,获得10
2秒前
满意的大地完成签到,获得积分10
2秒前
2秒前
MAKEYF完成签到 ,获得积分10
3秒前
科目三应助laflame采纳,获得10
3秒前
吴灵发布了新的文献求助10
3秒前
深情安青应助11采纳,获得10
3秒前
qidais发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
iNk应助YJ采纳,获得20
5秒前
6秒前
6秒前
24发布了新的文献求助10
6秒前
zhang发布了新的文献求助10
7秒前
黎缘发布了新的文献求助20
7秒前
英姑应助漂亮的麦片采纳,获得10
8秒前
顺利毕业完成签到,获得积分10
9秒前
夏以宁完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
EeeYiz完成签到 ,获得积分10
10秒前
10秒前
darrickkkkk发布了新的文献求助10
10秒前
氙氙发布了新的文献求助10
10秒前
李胜男完成签到,获得积分20
10秒前
Erin发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
共享精神应助小毛线采纳,获得10
11秒前
搜集达人应助zhang采纳,获得10
12秒前
活力的天空完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070635
求助须知:如何正确求助?哪些是违规求助? 4291701
关于积分的说明 13371472
捐赠科研通 4111985
什么是DOI,文献DOI怎么找? 2251839
邀请新用户注册赠送积分活动 1256879
关于科研通互助平台的介绍 1189544