重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Classification of acute ischemic stroke EEG signal using entropy-based features, wavelet decomposition, and machine learning algorithms

脑电图 朴素贝叶斯分类器 模式识别(心理学) 人工智能 熵(时间箭头) 决策树学习 磁共振成像 计算机科学 决策树 语音识别 医学 放射科 支持向量机 精神科 量子力学 物理
作者
Annisaa’ Fitri Nurfirdausi,Sastra Kusuma Wijaya,Prawito Prajitno,Nurhadi Ibrahim
出处
期刊:Nucleation and Atmospheric Aerosols 卷期号:2537: 050003-050003 被引量:5
标识
DOI:10.1063/5.0098733
摘要

Stroke is one of the most leading causes of death and disability in the world as well as in Indonesia. Almost 85% of stroke patients suffer from Acute Ischemic Stroke (AIS). They need to be early diagnosed to improve stroke treatment. The most common tools that have been widely used in diagnosing strokes are Computed Tomography Scans (CT Scans) and Magnetic Resonance Imaging (MRI). Electroencephalography (EEG) analysis has been widely studied in identifying stroke disease due to its relatively low cost and non-invasive characteristics. The study is aimed to classify the severity of AIS patients using EEG signals into four classes: normal, minor, moderate, and severe. This study was conducted in Rumah Sakit Pusat Otak Nasional (RSPON, National Brain Center Hospital), Jakarta, and acquired 32-channel EEG data recordings, CT-Scan images, and NIHSS scores. The total subject participated in this study was 57 subjects: 35 male subjects and 22 female subjects with age ranges 40 – 60 years old. Shannon Entropy (SE), and Log Energy feature-based EEG from alpha, beta, theta, delta, and gamma sub-bands were extracted and evaluated as the EEG signals are complex, non-stationary, and non-linear. These features were combined with Delta to Alpha Ratio (DAR) and Delta Theta to Alpha Beta Ratio (DTABR) that were extracted using wavelet decomposition. All of these features were proceeded using three different classifiers: k-Nearest Neighbors, Decision Tree, and Naïve Bayes classifier to compare their performances. Besides classifiers, we also used three different sets of features: All features; Shannon Entropy; Log Energy; Shannon Entropy, and Log Energy features as training inputs. The highest accuracy was yielded by Decision Tree using Shannon Entropy feature, which yields 83% accuracy. This system would be expected to be used widely in type-C hospitals in Indonesia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助by采纳,获得10
1秒前
wanci应助huangziw采纳,获得10
2秒前
2秒前
2秒前
hilm应助史超采纳,获得20
2秒前
科研小菜完成签到 ,获得积分10
3秒前
老艺人完成签到,获得积分10
3秒前
3秒前
3秒前
连夜骑驴跑路完成签到 ,获得积分10
3秒前
4秒前
4秒前
菜头完成签到,获得积分10
4秒前
CDL完成签到,获得积分10
4秒前
科研通AI6应助杂酱面zz采纳,获得10
4秒前
5秒前
5秒前
6秒前
好运6连发布了新的文献求助10
6秒前
万能图书馆应助max采纳,获得10
6秒前
北沐城歌应助啦啦啦采纳,获得20
6秒前
6秒前
Yu发布了新的文献求助10
7秒前
马tttt发布了新的文献求助10
7秒前
筱曼发布了新的文献求助10
7秒前
NexusExplorer应助北欧海盗采纳,获得10
8秒前
10秒前
共享精神应助mammer采纳,获得10
10秒前
明月清风完成签到,获得积分10
11秒前
11秒前
fox发布了新的文献求助10
11秒前
11秒前
12秒前
cc发布了新的文献求助10
12秒前
太叔聪展完成签到,获得积分10
12秒前
wangyi邮箱发布了新的文献求助10
12秒前
任性的鸵鸟完成签到,获得积分10
12秒前
chenhailang完成签到,获得积分10
13秒前
我是老大应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465838
求助须知:如何正确求助?哪些是违规求助? 4570083
关于积分的说明 14322455
捐赠科研通 4496549
什么是DOI,文献DOI怎么找? 2463392
邀请新用户注册赠送积分活动 1452295
关于科研通互助平台的介绍 1427497