Classification of acute ischemic stroke EEG signal using entropy-based features, wavelet decomposition, and machine learning algorithms

脑电图 朴素贝叶斯分类器 模式识别(心理学) 人工智能 熵(时间箭头) 决策树学习 磁共振成像 计算机科学 决策树 语音识别 医学 放射科 支持向量机 精神科 量子力学 物理
作者
Annisaa’ Fitri Nurfirdausi,Sastra Kusuma Wijaya,Prawito Prajitno,Nurhadi Ibrahim
出处
期刊:Nucleation and Atmospheric Aerosols 卷期号:2537: 050003-050003 被引量:5
标识
DOI:10.1063/5.0098733
摘要

Stroke is one of the most leading causes of death and disability in the world as well as in Indonesia. Almost 85% of stroke patients suffer from Acute Ischemic Stroke (AIS). They need to be early diagnosed to improve stroke treatment. The most common tools that have been widely used in diagnosing strokes are Computed Tomography Scans (CT Scans) and Magnetic Resonance Imaging (MRI). Electroencephalography (EEG) analysis has been widely studied in identifying stroke disease due to its relatively low cost and non-invasive characteristics. The study is aimed to classify the severity of AIS patients using EEG signals into four classes: normal, minor, moderate, and severe. This study was conducted in Rumah Sakit Pusat Otak Nasional (RSPON, National Brain Center Hospital), Jakarta, and acquired 32-channel EEG data recordings, CT-Scan images, and NIHSS scores. The total subject participated in this study was 57 subjects: 35 male subjects and 22 female subjects with age ranges 40 – 60 years old. Shannon Entropy (SE), and Log Energy feature-based EEG from alpha, beta, theta, delta, and gamma sub-bands were extracted and evaluated as the EEG signals are complex, non-stationary, and non-linear. These features were combined with Delta to Alpha Ratio (DAR) and Delta Theta to Alpha Beta Ratio (DTABR) that were extracted using wavelet decomposition. All of these features were proceeded using three different classifiers: k-Nearest Neighbors, Decision Tree, and Naïve Bayes classifier to compare their performances. Besides classifiers, we also used three different sets of features: All features; Shannon Entropy; Log Energy; Shannon Entropy, and Log Energy features as training inputs. The highest accuracy was yielded by Decision Tree using Shannon Entropy feature, which yields 83% accuracy. This system would be expected to be used widely in type-C hospitals in Indonesia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真初之完成签到,获得积分10
1秒前
彭于晏应助LXT采纳,获得10
2秒前
里清水完成签到 ,获得积分10
2秒前
dyyisash完成签到 ,获得积分10
2秒前
浩多多完成签到,获得积分10
2秒前
林安林安完成签到 ,获得积分10
3秒前
王饱饱完成签到 ,获得积分10
4秒前
顺利小鸽子完成签到,获得积分10
4秒前
小青椒应助hah采纳,获得50
4秒前
qqqq22完成签到,获得积分10
4秒前
努恩完成签到,获得积分10
5秒前
orixero应助学术混子采纳,获得10
5秒前
田二亩完成签到,获得积分10
5秒前
aaa完成签到,获得积分10
6秒前
激情的含巧完成签到,获得积分10
8秒前
果汁豆浆完成签到,获得积分10
10秒前
加了个浩完成签到,获得积分10
10秒前
10秒前
鱼贝贝完成签到 ,获得积分10
10秒前
HJJHJH发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助20
12秒前
vviiiii完成签到,获得积分10
12秒前
阿玺完成签到,获得积分10
13秒前
13秒前
xiaoyou完成签到,获得积分10
13秒前
Ha完成签到,获得积分10
13秒前
枕月听松完成签到,获得积分10
15秒前
17秒前
17秒前
18秒前
xwx完成签到,获得积分10
19秒前
KJ完成签到,获得积分10
20秒前
冰阔罗发布了新的文献求助10
22秒前
学术混子发布了新的文献求助10
22秒前
wzbc完成签到,获得积分10
22秒前
嬛嬛完成签到,获得积分20
23秒前
XIAOLAN发布了新的文献求助30
23秒前
yuyiyi完成签到,获得积分10
23秒前
23秒前
kk应助沈呆呆采纳,获得50
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613581
求助须知:如何正确求助?哪些是违规求助? 4018192
关于积分的说明 12437368
捐赠科研通 3700791
什么是DOI,文献DOI怎么找? 2040931
邀请新用户注册赠送积分活动 1073664
科研通“疑难数据库(出版商)”最低求助积分说明 957328