Classification of acute ischemic stroke EEG signal using entropy-based features, wavelet decomposition, and machine learning algorithms

脑电图 朴素贝叶斯分类器 模式识别(心理学) 人工智能 熵(时间箭头) 决策树学习 磁共振成像 计算机科学 决策树 语音识别 医学 放射科 支持向量机 精神科 量子力学 物理
作者
Annisaa’ Fitri Nurfirdausi,Sastra Kusuma Wijaya,Prawito Prajitno,Nurhadi Ibrahim
出处
期刊:Nucleation and Atmospheric Aerosols 卷期号:2537: 050003-050003 被引量:5
标识
DOI:10.1063/5.0098733
摘要

Stroke is one of the most leading causes of death and disability in the world as well as in Indonesia. Almost 85% of stroke patients suffer from Acute Ischemic Stroke (AIS). They need to be early diagnosed to improve stroke treatment. The most common tools that have been widely used in diagnosing strokes are Computed Tomography Scans (CT Scans) and Magnetic Resonance Imaging (MRI). Electroencephalography (EEG) analysis has been widely studied in identifying stroke disease due to its relatively low cost and non-invasive characteristics. The study is aimed to classify the severity of AIS patients using EEG signals into four classes: normal, minor, moderate, and severe. This study was conducted in Rumah Sakit Pusat Otak Nasional (RSPON, National Brain Center Hospital), Jakarta, and acquired 32-channel EEG data recordings, CT-Scan images, and NIHSS scores. The total subject participated in this study was 57 subjects: 35 male subjects and 22 female subjects with age ranges 40 – 60 years old. Shannon Entropy (SE), and Log Energy feature-based EEG from alpha, beta, theta, delta, and gamma sub-bands were extracted and evaluated as the EEG signals are complex, non-stationary, and non-linear. These features were combined with Delta to Alpha Ratio (DAR) and Delta Theta to Alpha Beta Ratio (DTABR) that were extracted using wavelet decomposition. All of these features were proceeded using three different classifiers: k-Nearest Neighbors, Decision Tree, and Naïve Bayes classifier to compare their performances. Besides classifiers, we also used three different sets of features: All features; Shannon Entropy; Log Energy; Shannon Entropy, and Log Energy features as training inputs. The highest accuracy was yielded by Decision Tree using Shannon Entropy feature, which yields 83% accuracy. This system would be expected to be used widely in type-C hospitals in Indonesia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
快乐小子发布了新的文献求助10
4秒前
4秒前
topsun完成签到,获得积分10
4秒前
临风发布了新的文献求助10
6秒前
平常的毛豆完成签到 ,获得积分0
7秒前
kls发布了新的文献求助10
9秒前
唐小鸣发布了新的文献求助10
9秒前
小张完成签到,获得积分10
10秒前
2004xc完成签到,获得积分10
12秒前
超级玛丽完成签到 ,获得积分10
13秒前
充电宝应助小高同学采纳,获得10
13秒前
领导范儿应助loop采纳,获得10
19秒前
19秒前
21秒前
年轻乘云完成签到,获得积分20
22秒前
CC完成签到 ,获得积分10
24秒前
24秒前
欣喜芮发布了新的文献求助10
24秒前
25秒前
晴雪水寒发布了新的文献求助10
26秒前
火星上小土豆完成签到 ,获得积分10
28秒前
perovskite完成签到,获得积分10
29秒前
蒋依伶完成签到,获得积分10
29秒前
小高同学发布了新的文献求助10
29秒前
悦耳听芹发布了新的文献求助10
30秒前
TONG97发布了新的文献求助10
32秒前
32秒前
32秒前
33秒前
彭于晏应助悦耳听芹采纳,获得10
34秒前
善学以致用应助100采纳,获得10
35秒前
36秒前
kuzzi发布了新的文献求助10
37秒前
快乐小子发布了新的文献求助10
37秒前
南境发布了新的文献求助10
37秒前
38秒前
38秒前
air完成签到 ,获得积分10
39秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342189
求助须知:如何正确求助?哪些是违规求助? 2969410
关于积分的说明 8639401
捐赠科研通 2649198
什么是DOI,文献DOI怎么找? 1450607
科研通“疑难数据库(出版商)”最低求助积分说明 671949
邀请新用户注册赠送积分活动 661138