Classification of acute ischemic stroke EEG signal using entropy-based features, wavelet decomposition, and machine learning algorithms

脑电图 朴素贝叶斯分类器 模式识别(心理学) 人工智能 熵(时间箭头) 决策树学习 磁共振成像 计算机科学 决策树 语音识别 医学 放射科 支持向量机 精神科 量子力学 物理
作者
Annisaa’ Fitri Nurfirdausi,Sastra Kusuma Wijaya,Prawito Prajitno,Nurhadi Ibrahim
出处
期刊:Nucleation and Atmospheric Aerosols 卷期号:2537: 050003-050003 被引量:5
标识
DOI:10.1063/5.0098733
摘要

Stroke is one of the most leading causes of death and disability in the world as well as in Indonesia. Almost 85% of stroke patients suffer from Acute Ischemic Stroke (AIS). They need to be early diagnosed to improve stroke treatment. The most common tools that have been widely used in diagnosing strokes are Computed Tomography Scans (CT Scans) and Magnetic Resonance Imaging (MRI). Electroencephalography (EEG) analysis has been widely studied in identifying stroke disease due to its relatively low cost and non-invasive characteristics. The study is aimed to classify the severity of AIS patients using EEG signals into four classes: normal, minor, moderate, and severe. This study was conducted in Rumah Sakit Pusat Otak Nasional (RSPON, National Brain Center Hospital), Jakarta, and acquired 32-channel EEG data recordings, CT-Scan images, and NIHSS scores. The total subject participated in this study was 57 subjects: 35 male subjects and 22 female subjects with age ranges 40 – 60 years old. Shannon Entropy (SE), and Log Energy feature-based EEG from alpha, beta, theta, delta, and gamma sub-bands were extracted and evaluated as the EEG signals are complex, non-stationary, and non-linear. These features were combined with Delta to Alpha Ratio (DAR) and Delta Theta to Alpha Beta Ratio (DTABR) that were extracted using wavelet decomposition. All of these features were proceeded using three different classifiers: k-Nearest Neighbors, Decision Tree, and Naïve Bayes classifier to compare their performances. Besides classifiers, we also used three different sets of features: All features; Shannon Entropy; Log Energy; Shannon Entropy, and Log Energy features as training inputs. The highest accuracy was yielded by Decision Tree using Shannon Entropy feature, which yields 83% accuracy. This system would be expected to be used widely in type-C hospitals in Indonesia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助fan采纳,获得10
2秒前
心理咨熊师完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
明亮的松鼠完成签到,获得积分10
4秒前
古月发布了新的文献求助10
4秒前
灵巧越泽发布了新的文献求助10
5秒前
蓝天发布了新的文献求助10
5秒前
李嘿嘿发布了新的文献求助10
5秒前
evvj发布了新的文献求助10
5秒前
火星上的羽毛完成签到,获得积分10
6秒前
骄傲yy发布了新的文献求助30
7秒前
yyyyy发布了新的文献求助10
8秒前
737发布了新的文献求助10
8秒前
Sun_Y完成签到,获得积分10
8秒前
wondor1111发布了新的文献求助10
8秒前
9秒前
缥缈芷珍完成签到,获得积分10
9秒前
科研通AI6应助丫丫采纳,获得10
9秒前
一杯半茶完成签到,获得积分10
9秒前
可爱的函函应助朴实钥匙采纳,获得10
9秒前
科研通AI2S应助呼呼采纳,获得10
9秒前
lim发布了新的文献求助20
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
Zx_1993应助科研通管家采纳,获得50
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得50
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
田様应助yangyong采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266