Superpixel-Based Relaxed Collaborative Representation With Band Weighting for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 加权 人工智能 相似性(几何) 数学 像素 上下文图像分类 计算机科学 代表(政治) 图像(数学) 医学 政治 政治学 法学 放射科
作者
Hongjun Su,Yihan Gao,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:9
标识
DOI:10.1109/tgrs.2022.3161139
摘要

Representation learning methods, such as sparse representation (SR) and collaborative representation (CR), have been widely used in hyperspectral image classification. However, they merely considered the similarities between features. Due to the plentiful spatial and spectral information in hyperspectral images, the differences between features also need to be considered. Relaxed CR (RCR) is used in face recognition to accommodate the difference and similarity of features simultaneously. In this article, a novel method of RCR with band weighting based on superpixel segmentation is proposed for hyperspectral image classification. The $\boldsymbol {l}_{ \boldsymbol {2}}$ norm on band coefficients and global average coefficients is exploited to ensure the similarity, and the variance determines the specific coefficient-related weight of each band. The training set is selected from each superpixel, which is considered as a subgraph rather than independent pixels. It is favorable for concentrating on the difference between similar bands since the samples in each superpixel are of high similarity. Furthermore, extended multiattribute profile (EMAP) features, Gabor features, and local binary pattern (LBP) features are employed to increase the diversity of features; thus, a method of multifeatures’ RCR based on superpixels is proposed. Three typical data are used to validate the related algorithms. The experiments demonstrate that the proposed algorithms can effectively improve classification accuracy compared to state-of-the-art classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助友好的背包采纳,获得10
刚刚
赵振辉发布了新的文献求助10
1秒前
lfzw完成签到 ,获得积分10
1秒前
不喝咖啡会死完成签到 ,获得积分10
2秒前
谦让橘子关注了科研通微信公众号
3秒前
小熊发布了新的文献求助10
3秒前
科研通AI5应助齐齐齐采纳,获得10
3秒前
学术长颈鹿完成签到,获得积分10
3秒前
李志敏完成签到,获得积分10
4秒前
4秒前
6秒前
pluto应助落寞臻采纳,获得20
6秒前
田様应助怡然冷安采纳,获得10
7秒前
kk完成签到,获得积分10
7秒前
听听完成签到,获得积分10
8秒前
十七。完成签到,获得积分10
8秒前
哈哈哈应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
彭于晏应助科研通管家采纳,获得30
9秒前
劲秉应助科研通管家采纳,获得20
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Leelelele应助科研通管家采纳,获得10
9秒前
Leelelele应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
哈哈哈应助科研通管家采纳,获得10
10秒前
哈哈哈应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
科研小白应助科研通管家采纳,获得10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740803
求助须知:如何正确求助?哪些是违规求助? 3283634
关于积分的说明 10036112
捐赠科研通 3000389
什么是DOI,文献DOI怎么找? 1646459
邀请新用户注册赠送积分活动 783642
科研通“疑难数据库(出版商)”最低求助积分说明 750427