清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Deep Convolutional Neural Network With Multiscale Feature Dynamic Fusion for InSAR Phase Filtering

计算机科学 卷积神经网络 干涉合成孔径雷达 合成孔径雷达 人工智能 特征(语言学) 噪音(视频) 模式识别(心理学) 降噪 算法 图像(数学) 哲学 语言学
作者
Yang Wang,Yi He,Lifeng Zhang,Sheng Yao,Zhiqing Wen,Shengpeng Cao,Zhan'ao Zhao,Yi Chen,Yali Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 6687-6710 被引量:3
标识
DOI:10.1109/jstars.2022.3199118
摘要

Interferometric phase filtering is a crucial step in the interferometric synthetic aperture radar (InSAR) data processing, which is also important for improving the accuracy of topography mapping and deformation monitoring. Most of the commonly used phase filtering methods perform windowing computations based on the statistical characteristics of a single interferogram in the spatial or frequency domain. However, the difficulty in taking into account the diversity and complexity of the phase image results in filtering methods with weak denoising, limited detail preservation, and poor generalization ability. At the same time, regardless of the spatial or frequency domain, improved phase filtering performance inevitably leads to the problem of declining effectiveness. This paper proposes a phase filtering method (MSFF-DCNN) based on the deep convolution neural network (DCNN) with Multi-scale feature dynamic fusion. Unlike the traditional feedforward neural networks (FNN), the proposed method adopts a strategy of multi-scale feature dynamic fusion that accounts for the deep and shallow features of the interferometric phase while also taking into account image detail preservation and noise suppression during phase filtering. Based on both subjective and objective evaluations, the experimental results using the simulated data prove that the proposed method has better noise suppression and detail preservation than the commonly used methods and that the filtering performance is less dependent on noise level. Experiments using the real data confirm that the proposed method has better generalization ability and can meet the precision requirements of practical applications. The method presented in this paper can provide a new approach for research in high-precision InSAR data processing technology while also offering technical support for practical InSAR applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空中风也完成签到 ,获得积分10
2秒前
缓慢的蜗牛完成签到,获得积分10
5秒前
ZCYBEYOND完成签到 ,获得积分10
6秒前
12秒前
1437594843完成签到 ,获得积分10
22秒前
46秒前
量子星尘发布了新的文献求助10
50秒前
李亚宁发布了新的文献求助10
52秒前
六一儿童节完成签到 ,获得积分10
58秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
P1gy发布了新的文献求助100
1分钟前
胜胜糖完成签到 ,获得积分10
1分钟前
亿亿亿亿发布了新的文献求助30
1分钟前
打打应助JA采纳,获得10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
亿亿亿亿发布了新的文献求助10
2分钟前
m李完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
沈惠映完成签到 ,获得积分10
2分钟前
tulips完成签到 ,获得积分10
2分钟前
望向天空的鱼完成签到 ,获得积分10
2分钟前
亿亿亿亿发布了新的文献求助10
3分钟前
3分钟前
3分钟前
JA发布了新的文献求助10
3分钟前
亿亿亿亿发布了新的文献求助10
3分钟前
柒八染完成签到 ,获得积分10
3分钟前
Sandy应助科研通管家采纳,获得80
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
研友_GZ3zRn完成签到 ,获得积分0
3分钟前
赘婿应助P1gy采纳,获得100
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
徐团伟完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128805
捐赠科研通 3238345
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069