A Deep Convolutional Neural Network With Multiscale Feature Dynamic Fusion for InSAR Phase Filtering

计算机科学 卷积神经网络 干涉合成孔径雷达 合成孔径雷达 人工智能 特征(语言学) 噪音(视频) 模式识别(心理学) 降噪 算法 图像(数学) 哲学 语言学
作者
Yang Wang,Yi He,Lifeng Zhang,Sheng Yao,Zhiqing Wen,Shengpeng Cao,Zhan'ao Zhao,Yi Chen,Yali Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 6687-6710 被引量:3
标识
DOI:10.1109/jstars.2022.3199118
摘要

Interferometric phase filtering is a crucial step in the interferometric synthetic aperture radar (InSAR) data processing, which is also important for improving the accuracy of topography mapping and deformation monitoring. Most of the commonly used phase filtering methods perform windowing computations based on the statistical characteristics of a single interferogram in the spatial or frequency domain. However, the difficulty in taking into account the diversity and complexity of the phase image results in filtering methods with weak denoising, limited detail preservation, and poor generalization ability. At the same time, regardless of the spatial or frequency domain, improved phase filtering performance inevitably leads to the problem of declining effectiveness. This paper proposes a phase filtering method (MSFF-DCNN) based on the deep convolution neural network (DCNN) with Multi-scale feature dynamic fusion. Unlike the traditional feedforward neural networks (FNN), the proposed method adopts a strategy of multi-scale feature dynamic fusion that accounts for the deep and shallow features of the interferometric phase while also taking into account image detail preservation and noise suppression during phase filtering. Based on both subjective and objective evaluations, the experimental results using the simulated data prove that the proposed method has better noise suppression and detail preservation than the commonly used methods and that the filtering performance is less dependent on noise level. Experiments using the real data confirm that the proposed method has better generalization ability and can meet the precision requirements of practical applications. The method presented in this paper can provide a new approach for research in high-precision InSAR data processing technology while also offering technical support for practical InSAR applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Genius采纳,获得10
1秒前
刘芸若诗完成签到,获得积分10
1秒前
Z_Z完成签到,获得积分10
1秒前
2秒前
哈哈哈哈哈完成签到,获得积分10
2秒前
3秒前
开心超人发布了新的文献求助10
3秒前
风声亦寒发布了新的文献求助10
3秒前
顾矜应助Miriammmmm采纳,获得10
3秒前
CodeCraft应助李晶晶采纳,获得10
4秒前
4秒前
5秒前
LQY完成签到,获得积分20
6秒前
可爱的函函应助lemon采纳,获得20
7秒前
8秒前
小雒雒完成签到,获得积分10
8秒前
香蕉觅云应助陈文文采纳,获得10
8秒前
LQY发布了新的文献求助10
9秒前
超级冬瓜发布了新的文献求助10
9秒前
9秒前
希望天下0贩的0应助AA1采纳,获得10
9秒前
代桃完成签到,获得积分10
10秒前
胡一一关注了科研通微信公众号
10秒前
11秒前
11秒前
邵洋发布了新的文献求助10
12秒前
TulIP完成签到,获得积分10
12秒前
逢尘化雪完成签到,获得积分10
13秒前
13秒前
14秒前
FOX完成签到,获得积分10
14秒前
14秒前
学学术术小小白白完成签到,获得积分10
15秒前
15秒前
李晶晶发布了新的文献求助10
15秒前
15秒前
16秒前
kai9712完成签到,获得积分10
16秒前
年轻的老人完成签到 ,获得积分10
17秒前
浅蓝色发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483