A Deep Convolutional Neural Network With Multiscale Feature Dynamic Fusion for InSAR Phase Filtering

计算机科学 卷积神经网络 干涉合成孔径雷达 合成孔径雷达 人工智能 特征(语言学) 噪音(视频) 模式识别(心理学) 降噪 算法 图像(数学) 哲学 语言学
作者
Yang Wang,Yi He,Lifeng Zhang,Sheng Yao,Zhiqing Wen,Shengpeng Cao,Zhan'ao Zhao,Yi Chen,Yali Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 6687-6710 被引量:3
标识
DOI:10.1109/jstars.2022.3199118
摘要

Interferometric phase filtering is a crucial step in the interferometric synthetic aperture radar (InSAR) data processing, which is also important for improving the accuracy of topography mapping and deformation monitoring. Most of the commonly used phase filtering methods perform windowing computations based on the statistical characteristics of a single interferogram in the spatial or frequency domain. However, the difficulty in taking into account the diversity and complexity of the phase image results in filtering methods with weak denoising, limited detail preservation, and poor generalization ability. At the same time, regardless of the spatial or frequency domain, improved phase filtering performance inevitably leads to the problem of declining effectiveness. This paper proposes a phase filtering method (MSFF-DCNN) based on the deep convolution neural network (DCNN) with Multi-scale feature dynamic fusion. Unlike the traditional feedforward neural networks (FNN), the proposed method adopts a strategy of multi-scale feature dynamic fusion that accounts for the deep and shallow features of the interferometric phase while also taking into account image detail preservation and noise suppression during phase filtering. Based on both subjective and objective evaluations, the experimental results using the simulated data prove that the proposed method has better noise suppression and detail preservation than the commonly used methods and that the filtering performance is less dependent on noise level. Experiments using the real data confirm that the proposed method has better generalization ability and can meet the precision requirements of practical applications. The method presented in this paper can provide a new approach for research in high-precision InSAR data processing technology while also offering technical support for practical InSAR applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
困敦发布了新的文献求助10
3秒前
小熊完成签到,获得积分10
4秒前
4秒前
Lili发布了新的文献求助10
6秒前
Yan发布了新的文献求助10
7秒前
暖阳发布了新的文献求助10
8秒前
12秒前
稳重的若雁应助Yan采纳,获得10
16秒前
C洛7完成签到,获得积分10
16秒前
大个应助huangnvshi采纳,获得10
19秒前
wyq完成签到,获得积分10
20秒前
JS完成签到,获得积分10
20秒前
wangyun完成签到,获得积分10
24秒前
25秒前
爆米花应助简单奎采纳,获得10
28秒前
tianxiadu发布了新的文献求助30
29秒前
30秒前
30秒前
susu完成签到 ,获得积分10
31秒前
33秒前
陈陈完成签到 ,获得积分10
33秒前
薰硝壤应助贪玩的元彤采纳,获得200
34秒前
34秒前
小马甲应助常乐的大宝剑采纳,获得10
35秒前
Dengdeng完成签到,获得积分10
37秒前
doki发布了新的文献求助30
40秒前
yosh发布了新的文献求助10
40秒前
40秒前
41秒前
42秒前
bkagyin应助lzr采纳,获得10
46秒前
哈哈哈完成签到,获得积分10
46秒前
tt完成签到 ,获得积分10
47秒前
47秒前
生5clean发布了新的文献求助10
48秒前
48秒前
49秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141402
求助须知:如何正确求助?哪些是违规求助? 2792438
关于积分的说明 7802634
捐赠科研通 2448628
什么是DOI,文献DOI怎么找? 1302644
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237