已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative EEG Changes in Youth With ASD Following Brief Mindfulness Meditation Exercise

注意 脑电图 心理学 冥想 静息状态功能磁共振成像 自闭症谱系障碍 自闭症 认知心理学 听力学 人工智能 发展心理学 计算机科学 临床心理学 神经科学 医学 哲学 神学
作者
Busra T. Susam,Nathan T. Riek,Kelly B. Beck,Safaa Eldeeb,Caitlin M. Hudac,Philip A. Gable,Caitlin M. Conner,Murat Akçakaya,Susan W. White,Carla A. Mazefsky
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 2395-2405 被引量:4
标识
DOI:10.1109/tnsre.2022.3199151
摘要

Mindfulness has growing empirical support for improving emotion regulation in individuals with Autism Spectrum Disorder (ASD). Mindfulness is cultivated through meditation practices. Assessing the role of mindfulness in improving emotion regulation is challenging given the reliance on self-report tools. Electroencephalography (EEG) has successfully quantified neural responses to emotional arousal and meditation in other populations, making it ideal to objectively measure neural responses before and after mindfulness (MF) practice among individuals with ASD. We performed an EEG-based analysis during a resting state paradigm in 35 youth with ASD. Specifically, we developed a machine learning classifier and a feature and channel selection approach that separates resting states preceding (Pre-MF) and following (Post-MF) a mindfulness meditation exercise within participants. Across individuals, frontal and temporal channels were most informative. Total power in the beta band (16-30 Hz), Total power (4-30 Hz), relative power in alpha band (8-12 Hz) were the most informative EEG features. A classifier using a non-linear combination of selected EEG features from selected channel locations separated Pre-MF and Post-MF resting states with an average accuracy, sensitivity, and specificity of 80.76%, 78.24%, and 82.14% respectively. Finally, we validated that separation between Pre-MF and Post-MF is due to the MF prime rather than linear-temporal drift. This work underscores machine learning as a critical tool for separating distinct resting states within youth with ASD and will enable better classification of underlying neural responses following brief MF meditation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助余红采纳,获得10
刚刚
leezz完成签到,获得积分10
刚刚
科研通AI6应助Wangyingjie5采纳,获得10
1秒前
2秒前
在水一方应助longlong采纳,获得10
3秒前
ax发布了新的文献求助10
4秒前
九九完成签到,获得积分10
5秒前
6秒前
影1发布了新的文献求助10
6秒前
小二郎应助Zyc采纳,获得10
7秒前
汤317完成签到,获得积分10
7秒前
7秒前
瀛瀛完成签到 ,获得积分0
8秒前
8秒前
吉里巴发布了新的文献求助10
9秒前
igigi发布了新的文献求助10
9秒前
Hale完成签到,获得积分0
9秒前
9秒前
九九发布了新的文献求助10
10秒前
轻松面包完成签到,获得积分10
11秒前
暗中讨饭完成签到,获得积分10
13秒前
Da You发布了新的文献求助10
13秒前
15秒前
longlong完成签到,获得积分20
17秒前
17秒前
Zyc发布了新的文献求助10
20秒前
QQQ发布了新的文献求助10
20秒前
21秒前
网络复杂发布了新的文献求助10
22秒前
大模型应助专注乐荷采纳,获得10
23秒前
23秒前
思源应助友好的鱼鱼采纳,获得10
24秒前
开心凌柏完成签到,获得积分10
25秒前
赫贞发布了新的文献求助10
27秒前
29秒前
yy发布了新的文献求助10
30秒前
31秒前
斯文败类应助Zyc采纳,获得10
31秒前
shjyang完成签到,获得积分0
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663851
求助须知:如何正确求助?哪些是违规求助? 4853565
关于积分的说明 15106071
捐赠科研通 4822104
什么是DOI,文献DOI怎么找? 2581216
邀请新用户注册赠送积分活动 1535412
关于科研通互助平台的介绍 1493740