Quantitative EEG Changes in Youth With ASD Following Brief Mindfulness Meditation Exercise

注意 脑电图 心理学 冥想 静息状态功能磁共振成像 自闭症谱系障碍 自闭症 认知心理学 听力学 人工智能 发展心理学 计算机科学 临床心理学 神经科学 医学 哲学 神学
作者
Busra T. Susam,Nathan T. Riek,Kelly B. Beck,Safaa Eldeeb,Caitlin M. Hudac,Philip A. Gable,Caitlin M. Conner,Murat Akçakaya,Susan W. White,Carla A. Mazefsky
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 2395-2405 被引量:4
标识
DOI:10.1109/tnsre.2022.3199151
摘要

Mindfulness has growing empirical support for improving emotion regulation in individuals with Autism Spectrum Disorder (ASD). Mindfulness is cultivated through meditation practices. Assessing the role of mindfulness in improving emotion regulation is challenging given the reliance on self-report tools. Electroencephalography (EEG) has successfully quantified neural responses to emotional arousal and meditation in other populations, making it ideal to objectively measure neural responses before and after mindfulness (MF) practice among individuals with ASD. We performed an EEG-based analysis during a resting state paradigm in 35 youth with ASD. Specifically, we developed a machine learning classifier and a feature and channel selection approach that separates resting states preceding (Pre-MF) and following (Post-MF) a mindfulness meditation exercise within participants. Across individuals, frontal and temporal channels were most informative. Total power in the beta band (16-30 Hz), Total power (4-30 Hz), relative power in alpha band (8-12 Hz) were the most informative EEG features. A classifier using a non-linear combination of selected EEG features from selected channel locations separated Pre-MF and Post-MF resting states with an average accuracy, sensitivity, and specificity of 80.76%, 78.24%, and 82.14% respectively. Finally, we validated that separation between Pre-MF and Post-MF is due to the MF prime rather than linear-temporal drift. This work underscores machine learning as a critical tool for separating distinct resting states within youth with ASD and will enable better classification of underlying neural responses following brief MF meditation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大庆发布了新的文献求助10
2秒前
WAM发布了新的文献求助10
2秒前
赘婿应助iNk采纳,获得30
3秒前
hiyo完成签到,获得积分10
5秒前
7秒前
米恩应助瀚森采纳,获得20
8秒前
Waoo完成签到,获得积分20
10秒前
小姚姚完成签到,获得积分10
11秒前
InfoNinja应助zry采纳,获得50
11秒前
前隆是狗完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
Hello应助蔬菜狗狗采纳,获得10
13秒前
万能图书馆应助chens采纳,获得10
13秒前
脑洞疼应助kang采纳,获得30
15秒前
研友_WnqRGZ完成签到,获得积分10
16秒前
勤恳的搬砖人完成签到 ,获得积分10
16秒前
暗夜轰炸机完成签到 ,获得积分20
16秒前
邵翎365完成签到,获得积分10
16秒前
大力沛萍发布了新的文献求助10
17秒前
华仔应助Karl采纳,获得10
17秒前
18秒前
mei发布了新的文献求助10
19秒前
19秒前
粗暴的君浩完成签到,获得积分10
19秒前
20秒前
科研通AI2S应助文慧采纳,获得10
20秒前
元谷雪应助畅快的问枫采纳,获得10
20秒前
23秒前
见闻发布了新的文献求助10
23秒前
我是老大应助淡定的晓刚采纳,获得10
24秒前
hyman发布了新的文献求助10
25秒前
25秒前
26秒前
thy完成签到,获得积分10
26秒前
烟花应助杨大漂亮采纳,获得10
27秒前
心空完成签到,获得积分10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123020
求助须知:如何正确求助?哪些是违规求助? 2773567
关于积分的说明 7718207
捐赠科研通 2429101
什么是DOI,文献DOI怎么找? 1290140
科研通“疑难数据库(出版商)”最低求助积分说明 621713
版权声明 600220