Quantitative EEG Changes in Youth With ASD Following Brief Mindfulness Meditation Exercise

注意 脑电图 心理学 冥想 静息状态功能磁共振成像 自闭症谱系障碍 自闭症 认知心理学 听力学 人工智能 发展心理学 计算机科学 临床心理学 神经科学 医学 哲学 神学
作者
Busra T. Susam,Nathan T. Riek,Kelly B. Beck,Safaa Eldeeb,Caitlin M. Hudac,Philip A. Gable,Caitlin M. Conner,Murat Akçakaya,Susan W. White,Carla A. Mazefsky
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 2395-2405 被引量:4
标识
DOI:10.1109/tnsre.2022.3199151
摘要

Mindfulness has growing empirical support for improving emotion regulation in individuals with Autism Spectrum Disorder (ASD). Mindfulness is cultivated through meditation practices. Assessing the role of mindfulness in improving emotion regulation is challenging given the reliance on self-report tools. Electroencephalography (EEG) has successfully quantified neural responses to emotional arousal and meditation in other populations, making it ideal to objectively measure neural responses before and after mindfulness (MF) practice among individuals with ASD. We performed an EEG-based analysis during a resting state paradigm in 35 youth with ASD. Specifically, we developed a machine learning classifier and a feature and channel selection approach that separates resting states preceding (Pre-MF) and following (Post-MF) a mindfulness meditation exercise within participants. Across individuals, frontal and temporal channels were most informative. Total power in the beta band (16-30 Hz), Total power (4-30 Hz), relative power in alpha band (8-12 Hz) were the most informative EEG features. A classifier using a non-linear combination of selected EEG features from selected channel locations separated Pre-MF and Post-MF resting states with an average accuracy, sensitivity, and specificity of 80.76%, 78.24%, and 82.14% respectively. Finally, we validated that separation between Pre-MF and Post-MF is due to the MF prime rather than linear-temporal drift. This work underscores machine learning as a critical tool for separating distinct resting states within youth with ASD and will enable better classification of underlying neural responses following brief MF meditation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助等待水绿采纳,获得10
刚刚
刚刚
1秒前
2秒前
徐立涛完成签到,获得积分10
2秒前
科研通AI2S应助TT采纳,获得10
2秒前
乐乐应助执着的导师采纳,获得10
2秒前
汉堡包应助小张同学采纳,获得10
2秒前
小牛发布了新的文献求助10
6秒前
那年那兔那些事完成签到 ,获得积分10
7秒前
科研通AI6应助pin采纳,获得30
8秒前
8秒前
阿橘完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
BowieHuang应助Rex采纳,获得10
9秒前
10秒前
赘婿应助小牛采纳,获得10
11秒前
DDD完成签到,获得积分10
11秒前
11秒前
虚心的如曼完成签到 ,获得积分10
11秒前
情怀应助黄小米采纳,获得30
12秒前
蚊子完成签到,获得积分10
12秒前
啊啊啊啊完成签到,获得积分10
13秒前
painting发布了新的文献求助10
13秒前
14秒前
14秒前
领导范儿应助葡萄小伊ovo采纳,获得10
14秒前
海盐气泡水完成签到,获得积分10
15秒前
晨晨完成签到,获得积分10
15秒前
18秒前
传奇3应助坚定的又莲采纳,获得10
18秒前
吧KO完成签到,获得积分10
18秒前
雪莉发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
慕青应助酷炫翠柏采纳,获得30
20秒前
柴yuki完成签到 ,获得积分10
20秒前
李健应助雪泪采纳,获得10
21秒前
华仔应助务实寄松采纳,获得10
21秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580844
求助须知:如何正确求助?哪些是违规求助? 4665585
关于积分的说明 14756750
捐赠科研通 4607138
什么是DOI,文献DOI怎么找? 2528135
邀请新用户注册赠送积分活动 1497453
关于科研通互助平台的介绍 1466427