Forecasting network-wide multi-step metro ridership with an attention-weighted multi-view graph to sequence learning approach

计算机科学 编码 图形 地铁列车时刻表 可转让性 卷积神经网络 数据挖掘 人工智能 机器学习 理论计算机科学 生物化学 基因 操作系统 罗伊特 化学
作者
Jie Bao,Jiawei Kang,Zhao Yang,Xinyuan Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118475-118475 被引量:4
标识
DOI:10.1016/j.eswa.2022.118475
摘要

The primary objective of this study is to forecast network-wide multi-step metro ridership with a novel attention-weighted multi-view graph to sequence learning approach (AW-MV-G2S). The developed AW-MV-G2S model employs multiple graph convolutional neural networks to capture spatial heterogeneous correlations between stations from geographic distance view, functional similarity view and demand pattern view, respectively. A bidirectional LSTM neural network and the attention mechanism is utilized to encode the long-range temporal dependencies in multiple time steps. A three-month trip record of 64 stations on four metro lines is collected from Nanjing Metro System to validate the model. The results indicate that the developed AW-MV-G2S model can fully encode the spatiotemporal characteristics in network-wide metro ridership data, and achieve better prediction accuracy and more robust performance than other compared models when making predictions across multiple look-ahead time steps for all three metro station types. Moreover, the model transferability result also reveals that the developed multi-view graph-to-sequence learning framework can be well transferred to other metro systems with various network structures. The results of this study can help the metro system authorities to dynamically modify the operation plans according to the fluctuation of passenger flow, such as adjusting the headway and train dispatching schedule to ensure the service quality of the entire metro system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
滔滔江水完成签到,获得积分10
1秒前
月夜花朝完成签到 ,获得积分10
1秒前
火星上易真完成签到 ,获得积分10
2秒前
深情安青应助王贤平采纳,获得10
4秒前
sswbzh应助12采纳,获得30
4秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
长情笑柳应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
TT001发布了新的文献求助10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
长情笑柳应助科研通管家采纳,获得10
6秒前
fufu发布了新的文献求助10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
yanting完成签到,获得积分10
6秒前
小伊完成签到,获得积分20
6秒前
传奇3应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109