Forecasting network-wide multi-step metro ridership with an attention-weighted multi-view graph to sequence learning approach

计算机科学 编码 图形 地铁列车时刻表 可转让性 卷积神经网络 数据挖掘 人工智能 机器学习 理论计算机科学 生物化学 化学 罗伊特 基因 操作系统
作者
Jie Bao,Jiawei Kang,Zhao Yang,Xinyuan Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118475-118475 被引量:4
标识
DOI:10.1016/j.eswa.2022.118475
摘要

The primary objective of this study is to forecast network-wide multi-step metro ridership with a novel attention-weighted multi-view graph to sequence learning approach (AW-MV-G2S). The developed AW-MV-G2S model employs multiple graph convolutional neural networks to capture spatial heterogeneous correlations between stations from geographic distance view, functional similarity view and demand pattern view, respectively. A bidirectional LSTM neural network and the attention mechanism is utilized to encode the long-range temporal dependencies in multiple time steps. A three-month trip record of 64 stations on four metro lines is collected from Nanjing Metro System to validate the model. The results indicate that the developed AW-MV-G2S model can fully encode the spatiotemporal characteristics in network-wide metro ridership data, and achieve better prediction accuracy and more robust performance than other compared models when making predictions across multiple look-ahead time steps for all three metro station types. Moreover, the model transferability result also reveals that the developed multi-view graph-to-sequence learning framework can be well transferred to other metro systems with various network structures. The results of this study can help the metro system authorities to dynamically modify the operation plans according to the fluctuation of passenger flow, such as adjusting the headway and train dispatching schedule to ensure the service quality of the entire metro system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳的断秋完成签到 ,获得积分10
1秒前
VDC发布了新的文献求助10
1秒前
1秒前
jasmine970000发布了新的文献求助100
1秒前
酷波er应助camellia采纳,获得10
2秒前
Zoe发布了新的文献求助10
2秒前
2秒前
2秒前
啊实打实完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
参上完成签到,获得积分10
5秒前
mingjie完成签到,获得积分10
5秒前
yam001完成签到,获得积分10
5秒前
aaaaa发布了新的文献求助10
5秒前
6秒前
牧紫菱完成签到,获得积分10
6秒前
7秒前
研友_RLN0vZ发布了新的文献求助10
7秒前
7秒前
7秒前
神勇的雅香应助001采纳,获得10
8秒前
研友_V8RDYn完成签到,获得积分10
8秒前
zzznznnn发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
FFFFFFF应助晓军采纳,获得10
11秒前
wanci应助艺玲采纳,获得10
11秒前
jfc完成签到 ,获得积分10
11秒前
香蕉觅云应助月白采纳,获得10
11秒前
思源应助mmx采纳,获得10
11秒前
Diaory2023完成签到 ,获得积分0
11秒前
雪小岳完成签到,获得积分10
12秒前
李小明完成签到,获得积分10
12秒前
12秒前
白小白发布了新的文献求助10
13秒前
thchiang发布了新的文献求助30
13秒前
Crsip关注了科研通微信公众号
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762