Forecasting network-wide multi-step metro ridership with an attention-weighted multi-view graph to sequence learning approach

计算机科学 编码 图形 地铁列车时刻表 可转让性 卷积神经网络 数据挖掘 人工智能 机器学习 理论计算机科学 生物化学 化学 罗伊特 基因 操作系统
作者
Jie Bao,Jiawei Kang,Zhao Yang,Xinyuan Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118475-118475 被引量:4
标识
DOI:10.1016/j.eswa.2022.118475
摘要

The primary objective of this study is to forecast network-wide multi-step metro ridership with a novel attention-weighted multi-view graph to sequence learning approach (AW-MV-G2S). The developed AW-MV-G2S model employs multiple graph convolutional neural networks to capture spatial heterogeneous correlations between stations from geographic distance view, functional similarity view and demand pattern view, respectively. A bidirectional LSTM neural network and the attention mechanism is utilized to encode the long-range temporal dependencies in multiple time steps. A three-month trip record of 64 stations on four metro lines is collected from Nanjing Metro System to validate the model. The results indicate that the developed AW-MV-G2S model can fully encode the spatiotemporal characteristics in network-wide metro ridership data, and achieve better prediction accuracy and more robust performance than other compared models when making predictions across multiple look-ahead time steps for all three metro station types. Moreover, the model transferability result also reveals that the developed multi-view graph-to-sequence learning framework can be well transferred to other metro systems with various network structures. The results of this study can help the metro system authorities to dynamically modify the operation plans according to the fluctuation of passenger flow, such as adjusting the headway and train dispatching schedule to ensure the service quality of the entire metro system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
小鱼完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
dadada完成签到,获得积分10
3秒前
3秒前
3秒前
小锦章完成签到,获得积分10
3秒前
4秒前
小马甲应助心海采纳,获得10
4秒前
艺涵完成签到,获得积分10
4秒前
bkagyin应助IanYoung71采纳,获得10
4秒前
iii完成签到,获得积分10
4秒前
4秒前
5秒前
龙傲天发布了新的文献求助10
5秒前
hq6045x完成签到,获得积分10
5秒前
端庄的蜜粉完成签到,获得积分10
5秒前
EricaLee9812完成签到,获得积分10
6秒前
linshunan完成签到 ,获得积分10
6秒前
乌漆嘛黑发布了新的文献求助10
6秒前
江峰发布了新的文献求助10
6秒前
Cheng完成签到 ,获得积分0
6秒前
善学以致用应助日暮不评采纳,获得10
6秒前
孤独妙海发布了新的文献求助10
7秒前
辣目童子完成签到 ,获得积分10
7秒前
7秒前
哈哈发布了新的文献求助20
7秒前
7秒前
7秒前
乐乐应助张宁采纳,获得10
8秒前
传奇3应助张宁采纳,获得10
8秒前
daladala发布了新的文献求助10
8秒前
8秒前
ZTF完成签到,获得积分10
8秒前
领导范儿应助Wakey采纳,获得10
9秒前
田様应助刘刘大顺采纳,获得10
9秒前
香菜碗里来完成签到,获得积分10
9秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149