A multi‐fault diagnosis method based on improved SMOTE for class‐imbalanced data

马氏距离 阿达布思 计算机科学 模式识别(心理学) 分类器(UML) 过采样 决策树 机器学习 数据挖掘 算法 人工智能 计算机网络 带宽(计算)
作者
Yuan Xu,Yang Zhao,Wei Ke,Yan‐Lin He,Qun‐Xiong Zhu,Yang Zhang,Xiaoqian Cheng
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
卷期号:101 (4): 1986-2001 被引量:8
标识
DOI:10.1002/cjce.24610
摘要

Abstract With the development of industrial processes, how to effectively diagnose the faults in an increasingly complex production process has attracted widespread attention. It is worth noting that there may be multiple types of faults in the actual industrial process, and there is an extreme class imbalance between the normal samples and the fault samples. Therefore, it is of practical significance to carry out research on the multi‐fault diagnosis method for class‐imbalanced data. In this paper, a multi‐fault diagnosis method based on improved synthetic minority sampling technology (SMOTE) is proposed. First, aiming at the class imbalance, an improved SMOTE algorithm based on Mahalanobis distance (Mahalanobis distance‐based SMOTE [MSMOTE]) is proposed for oversampling. As the Euclidean distance in the traditional SMOTE algorithm does not consider the coupling relationship between features, the Mahalanobis distance is introduced, which is not dependent on the scale and eliminates the influence of different dimensions. Second, in order to better obtain the global and local information of the sample, the kernel local Fisher discriminant analysis (KLFDA) algorithm is used for feature extraction. Third, a multi‐fault diagnosis model based on the AdaBoost.M2 classifier is constructed in which the decision tree is introduced as the weak classifier. The Adaboost.M2 algorithm integrates multiple decision trees by setting the sample weight, the label weight, and the classifier weight, which effectively improve the classification accuracy by only using the decision tree. Finally, the Tennessee Eastman process is used to conduct case studies. For the comparison results, the proposed multi‐fault diagnosis method based on improved SMOTE has higher accuracy and F1‐Score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lydia完成签到,获得积分10
1秒前
FashionBoy应助活泼灵枫采纳,获得10
2秒前
科研通AI2S应助娇气的雁兰采纳,获得10
2秒前
Akim应助美女采纳,获得10
2秒前
陈为东发布了新的文献求助10
2秒前
彭珊发布了新的文献求助10
3秒前
血小板完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助麦啦啦采纳,获得10
3秒前
善良梦竹发布了新的文献求助30
5秒前
粗心的松鼠完成签到,获得积分10
5秒前
开心听露完成签到,获得积分10
6秒前
htp发布了新的文献求助10
7秒前
感动书竹完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI2S应助tuzhihong采纳,获得10
9秒前
笑看人生发布了新的文献求助50
10秒前
不讲发布了新的文献求助10
10秒前
wonderful完成签到,获得积分10
11秒前
11秒前
大模型应助一口辰采纳,获得10
12秒前
ding应助arrow采纳,获得10
14秒前
15秒前
祺志鲜明完成签到,获得积分10
16秒前
17秒前
17秒前
zh完成签到,获得积分10
18秒前
尘闲发布了新的文献求助10
18秒前
阿部阿部发布了新的文献求助10
20秒前
20秒前
水木完成签到,获得积分20
20秒前
村长热爱美丽完成签到 ,获得积分10
20秒前
20秒前
mawenxiu完成签到,获得积分10
22秒前
23秒前
Peng完成签到,获得积分10
23秒前
zhanghhsnow发布了新的文献求助30
24秒前
ding应助可靠小狗采纳,获得10
24秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074349
求助须知:如何正确求助?哪些是违规求助? 2727785
关于积分的说明 7500402
捐赠科研通 2375884
什么是DOI,文献DOI怎么找? 1259599
科研通“疑难数据库(出版商)”最低求助积分说明 610725
版权声明 597081