燃烧
动力学
碳酸盐
层流
化学动力学
化学
矿物学
热力学
物理化学
有机化学
物理
量子力学
作者
Guangyuan Feng,Qing Yang,Zechang Liu,Zhenghui Jiang,Chengyuan Zhao,Kun Wang,Andrés Fuentes,Dongping Chen,Xu He
出处
期刊:Fuel
[Elsevier]
日期:2024-01-21
卷期号:363: 130881-130881
被引量:3
标识
DOI:10.1016/j.fuel.2024.130881
摘要
Experimental and chemical kinetics studies on the combustion of linear and cyclic carbonates are essential for gaining insight into the complex chemical reaction processes associated with thermal runaway in lithium-ion batteries (LIBs). In a constant-volume combustion chamber, experiments were conducted at initial temperatures of 403/473/543 K, initial pressures of 1/2/3 atm, and equivalence ratios ranging from 0.7 to 1.5. Laminar burning velocities (LBV) were measured for commonly used linear carbonates, including dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and a cyclic carbonate, ethyl carbonate (EC), which are frequently used in LIBs. The results indicate that the gas-phase reactivity of these carbonates under the same experimental conditions can be summarized as DEC = EMC > DMC > EC. The obtained LBV data have been utilized to validate a new comprehensive chemical kinetics mechanism (CEL) for both linear and cyclic carbonates. CEL places particular emphasis on accurately describing fuel-specific reactions and the CH2CO sub-model. Throughout the entire scope of this study, the predictions made by CEL align well with the experimental data. A detailed kinetics analysis using CEL has revealed that the differences in reaction activity among the four carbonate species primarily arise from variations in the concentrations of active radical species such as H and OH, as well as differences in the initial oxidation reactions that control fuel consumption. All four carbonates generate CO2 from two main sources: one is the CO2 elimination reactions from intermediate species, and the other is the oxidation of CO.
科研通智能强力驱动
Strongly Powered by AbleSci AI