Multimodal Co-attention Transformer for Video-Based Personality Understanding

可解释性 模式 计算机科学 人工智能 人格 机器学习 可视化 多媒体 心理学 社会心理学 社会科学 社会学
作者
Mingwei Sun,Kunpeng Zhang
标识
DOI:10.1109/bigdata59044.2023.10386376
摘要

Video has emerged as a pervasive medium for communication, entertainment, and information sharing. With the consumption of video content continuing to increase rapidly, understanding the impact of visual narratives on personality has become a crucial area of research. While text-based personality understanding has been extensively studied in the literature, video-based personality prediction remains relatively under-explored. Existing approaches to video-based personality prediction can be broadly categorized into two directions: learning a joint representation of audio and visual information using fully-connected feed-forward networks, and separating a video into its individual modalities (text, image, and audio), training each modality independently, and then ensembling the results for subsequent personality prediction. However, both approaches have notable limitations: ignoring complex interactions between visual and audio components, or considering all three modalities but not in a joint manner. Furthermore, all methods require high computational costs as they require high-resolution images to train. In this paper, we propose a novel Multimodal Co-attention Transformer neural network for video-based affect prediction. Our approach simultaneously models audio, visual, and text representations, as well as their inter-relations, to achieve accurate and efficient predictions. We demonstrate the effectiveness of our method via extensive experiments on a real-world dataset: First Impressions. Our results show that the proposed model outperforms state-of-the-art approaches while maintaining high computational efficiency. In addition to our performance evaluation, we also conduct interpretability analyses to investigate the contribution across different levels. Our findings reveal valuable insights into personality predictions. The implementation is available at: https://github.com/nestor-sun/mcoattention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Abi发布了新的文献求助10
刚刚
顾矜应助meimei采纳,获得10
刚刚
alex发布了新的文献求助30
3秒前
hhh发布了新的文献求助10
3秒前
3秒前
邹友亮完成签到,获得积分10
3秒前
笑笑发布了新的文献求助10
3秒前
3秒前
研友_nEj9DZ完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
7秒前
nbzhan发布了新的文献求助10
8秒前
8秒前
烧仙草发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
蒋时晏应助simon0208采纳,获得200
9秒前
罗向南发布了新的文献求助10
9秒前
10秒前
四眼骷髅发布了新的文献求助10
11秒前
张才豪完成签到,获得积分10
11秒前
hhh关闭了hhh文献求助
12秒前
12秒前
韶安萱发布了新的文献求助10
13秒前
Z赵发布了新的文献求助10
14秒前
李伟发布了新的文献求助10
14秒前
15秒前
炙热冰蓝发布了新的文献求助20
15秒前
程风破浪发布了新的文献求助10
17秒前
汉堡包应助烧仙草采纳,获得10
18秒前
白攸远完成签到,获得积分10
18秒前
754完成签到,获得积分10
18秒前
肖肖完成签到 ,获得积分10
18秒前
小二郎应助bbb采纳,获得10
19秒前
19秒前
19秒前
四眼骷髅完成签到,获得积分20
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669