An improved arithmetic optimization algorithm with multi-strategy for adaptive multi-spectral image fusion

计算机科学 融合 算法 图像融合 图像(数学) 算术 人工智能 数学 语言学 哲学
作者
Xiaodong Mi,Qifang Luo,Yongquan Zhou
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (4): 9889-9921
标识
DOI:10.3233/jifs-235607
摘要

Panchromatic and multi-spectral image fusion, called panchromatic sharpening, is the process of combining the spatial and spectral information of the source image into the fused image to give the image a higher spatial and spectral resolution. In order to improve the spatial resolution and spectral information quality of the image, an adaptive multi-spectral image fusion method based on an improved arithmetic optimization algorithm is proposed. This paper proposed improved arithmetic optimization algorithm, which uses dynamic stochastic search technique and oppositional learning operator, to perform local search and behavioral complementation of population individuals, and to improve the ability of population individuals to jump out of the local optimum. The method combines adaptive methods to calculate the weights of linear combinations of panchromatic and multi-spectral gradients to improve the quality of fused images. This study not only improves the quality and effect of image fusion, but also focuses on optimizing the operation efficiency of the algorithm to have real-time and high efficiency. Experimental results show that the proposed method exhibits strong performance on different datasets, improves the spatial resolution and spectral information quality of the fused images, and has good adaptability and robustness. The source code is available at: https://github.com/starboot/IAOA-For-Image-Fusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz完成签到,获得积分10
刚刚
酸酸完成签到 ,获得积分20
刚刚
可爱的函函应助宸殇翊采纳,获得10
1秒前
科研通AI6应助,,采纳,获得10
1秒前
CodeCraft应助余真谛采纳,获得10
1秒前
1秒前
young完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
jetwang给jetwang的求助进行了留言
2秒前
2秒前
难过板栗发布了新的文献求助10
2秒前
斯文败类应助shuofeng采纳,获得10
3秒前
高高的夜梅完成签到,获得积分20
4秒前
Vivian_Zhang应助zzz采纳,获得10
4秒前
橘子味完成签到,获得积分10
4秒前
aniu发布了新的文献求助10
4秒前
Rainnnn完成签到,获得积分20
4秒前
4秒前
why完成签到,获得积分10
5秒前
顾北完成签到,获得积分10
5秒前
斑布发布了新的文献求助10
5秒前
科研通AI6应助新嘟采纳,获得10
5秒前
LL77完成签到 ,获得积分10
5秒前
5秒前
lijia3发布了新的文献求助10
6秒前
彭于晏应助高高的冰绿采纳,获得10
6秒前
完美世界应助Simms采纳,获得10
6秒前
英姑应助Sitroul采纳,获得10
6秒前
6秒前
健忘芷发布了新的文献求助20
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
lijs给lijs的求助进行了留言
7秒前
终醒发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401