清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparison of prediction models for soy protein isolate hydrolysates bitterness built using sensory, spectrofluorometric and chromatographic data from varying enzymes and degree of hydrolysis

木瓜蛋白酶 化学 水解物 色谱法 菠萝蛋白酶 大豆蛋白 水解 离群值 蛋白酵素 酶水解 蛋白酶 食品科学 人工智能 计算机科学 生物化学
作者
Yolandani Yolandani,Dandan Liu,Fredy Agil Raynaldo,Mokhtar Dabbour,Xueli Zhang,Zhongyuan Chen,Qingzhi Ding,Lin Luo,Haile Ma
出处
期刊:Food Chemistry [Elsevier]
卷期号:442: 138428-138428 被引量:15
标识
DOI:10.1016/j.foodchem.2024.138428
摘要

The bitterness of soy protein isolate hydrolysates prepared using five proteases at varying degree of hydrolysis (DH) and its relation to physicochemical properties, i.e., surface hydrophobicity (H0), relative hydrophobicity (RH), and molecular weight (MW), were studied and developed for predictive modelling using machine learning. Bitter scores were collected from sensory analysis and assigned as the target, while the physicochemical properties were assigned as the features. The modelling involved data pre-processing with local outlier factor; model development with support vector machine, linear regression, adaptive boosting, and K-nearest neighbors algorithms; and performance evaluation by 10-fold stratified cross-validation. The results indicated that alcalase hydrolysates were the most bitter, followed by protamex, flavorzyme, papain, and bromelain. Distinctive correlation results were found among the physicochemical properties, influenced by the disparity of each protease. Among the features, the combination of RH-MW fitted various classification models and resulted in the best prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方白秋完成签到,获得积分0
6秒前
prawn218完成签到,获得积分10
14秒前
英姑应助悟空采纳,获得10
16秒前
量子星尘发布了新的文献求助10
45秒前
51秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
学术混子发布了新的文献求助10
1分钟前
1分钟前
学术混子完成签到,获得积分10
1分钟前
lyp完成签到 ,获得积分10
1分钟前
FashionBoy应助王颖超采纳,获得10
1分钟前
二三完成签到 ,获得积分10
2分钟前
2分钟前
王颖超发布了新的文献求助10
2分钟前
欣喜的香菱完成签到 ,获得积分10
2分钟前
cheng完成签到,获得积分10
2分钟前
科研通AI6.1应助内向的绿采纳,获得10
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
随心所欲完成签到 ,获得积分10
2分钟前
领导范儿应助嘻嘻哈哈采纳,获得10
2分钟前
2分钟前
ceeray23发布了新的文献求助50
2分钟前
彩色的芷容完成签到 ,获得积分10
3分钟前
wrl2023完成签到,获得积分10
3分钟前
内向的绿发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
Freeasy完成签到 ,获得积分10
3分钟前
嘻嘻哈哈发布了新的文献求助10
3分钟前
3分钟前
万能图书馆应助嘻嘻哈哈采纳,获得10
3分钟前
4分钟前
Mrmao0213发布了新的文献求助10
4分钟前
4分钟前
gwbk完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773041
求助须知:如何正确求助?哪些是违规求助? 5605571
关于积分的说明 15430331
捐赠科研通 4905756
什么是DOI,文献DOI怎么找? 2639694
邀请新用户注册赠送积分活动 1587610
关于科研通互助平台的介绍 1542574